

Core-edge Integration Studies In Negative Triangularity In TCV

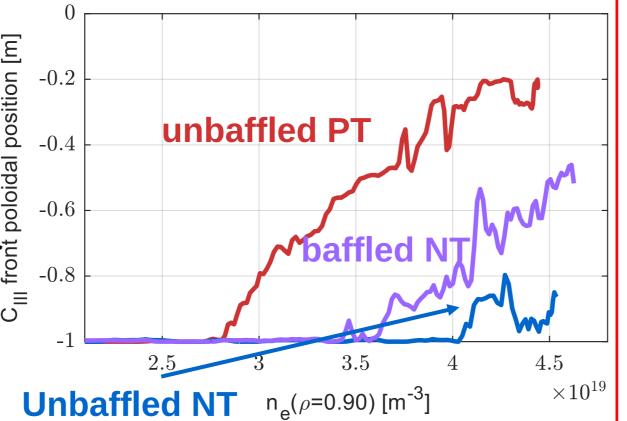
EX-D - Divertor ID: 2944

olivier.fevrier@epfl.ch

O. FÉVRIER¹, G. DURR-LEGOUPIL-NICOUD¹, C. CONTRÉ¹, R. MORGAN¹, O. SAUTER¹, C. THEILER¹, S. CODA¹, F. MOMBELLI², A. PEREK¹, H. REIMERDES¹, E. TONELLO¹, B. VINCENT¹, M. ZURITA¹, A. MASTROGIROLAMO², M. PASSONI², THE EUROFUSION TOKAMAK EXPLOITATION TEAM^a AND THE TCV TEAM^b

- ¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
- ² Politecnico di Milano, Department of Energy, Milan, Italy
- ^a See Author list of E. Joffrin et al 2024 Nucl. Fusion 64 112019
- ^b See Author list of B.P. Duval et al 2024 Nucl. Fusion 64 112023

Introduction


- Negative Triangularity (NT) configurations have demonstrated higher energy confinement compared to the conventional Positive Triangularity (PT) configurations [1].
- Experiments on TCV and DIII-D have shown that NT L-Mode plasmas can exhibit confinement comparable to H-mode [1].
- Potential for high-confinement **L-Mode reactors** that circumvent H-mode challenges: no ELMs, no power thresholds (L-H, H-L).

In this contribution, we demonstrate the compatibility of NT plasmas with reactor relevant operation and core-edge integration.

Comparing intrinsic differences between NT and PT detachment

Device: TCV tokamak (R_0 =0.88 m, a=0.24 m, B_0 =1.44 T) Ohmic L-Mode, $I_D = 220$ kA, with upwards ion ∇B drifts and density ramps $< n_o > \sim 3.5 \rightarrow 8 \times 10^{19} \text{m}^{-3}$

- Fixed divertor geometry: (bottom triangularity) $\delta_1 = 0.5$. Divertor baffles increase divertor closure
- NT configurations (top triangularity $\delta_{11} = -0.3$), unbaffled and baffled
- Compared to an unbaffled PT ($\delta_{\parallel} = 0.3$) Results:
- Increased divertor closure: $p_n^{div} \uparrow \rightarrow T_e \downarrow$ at target
- At high $\langle n_e \rangle$, target cooling is **equivalent** in $\frac{\alpha}{2}$ baffled NT and unbaffled PT
- CIII front moves (proxy for Te~10eV) closer to the X-point with higher closure but does not reach PT levels

In Ohmic L-mode, achieving divertor detachment is significantly harder in NT configurations compared to Positive Triangularity (PT) [2,3].

- Ascribed, at least in part, to smaller $\lambda_{\rm a}$ in NT vs PT, linked to $\delta_{\rm m}$ (and not δ_1) [4,5,6]
- Consistent with SOLPS-ITER simulations of NT vs PT discharges, which require smaller perpendicular transport in NT to match

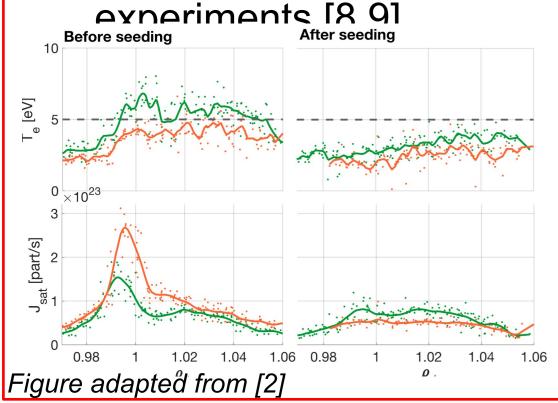
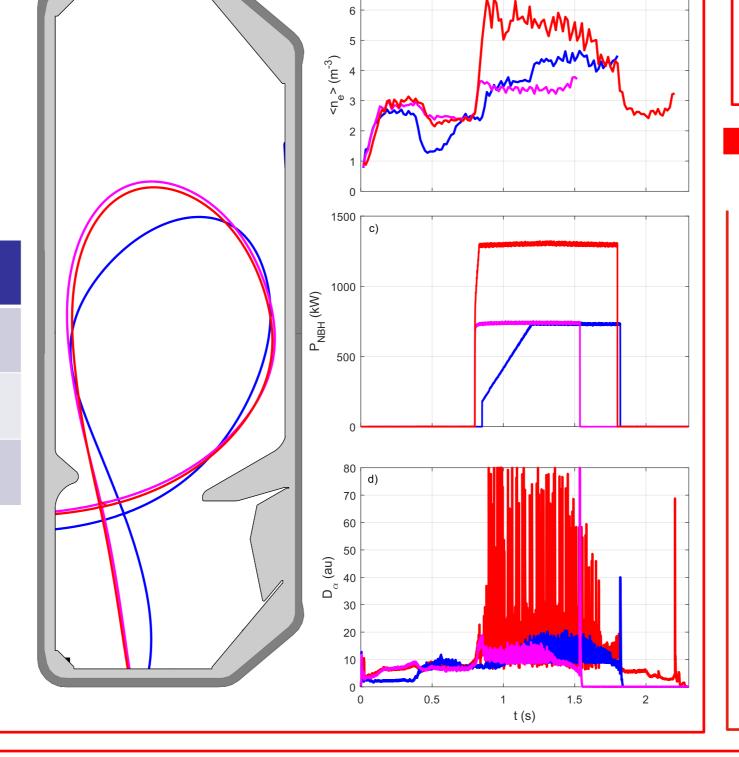


Figure adapted from [5] **Impurity seeded detachment** is achieved in NT, with 3 times more N₂ injected than for PT, at the cost of energy confinement and N₂ penetration in the core


Towards high-performance, fully detached NT scenarios

- NBI-heated L-mode NT compared against NBI-heated L- and H-mode PT
- Ip=170 kA with downwards ion ∇B drifts.
- D₂ fueling and N₂ seeding.

Config,	$\delta_{ m u}$ / $\delta_{ m l}$	NBI power
NT L-Mode	-0.29 / 0.45	750 kW
PT L-Mode	0.19 / 0.7	750 kW
PT H-Mode	0.19 / 0.7	1.3 MW

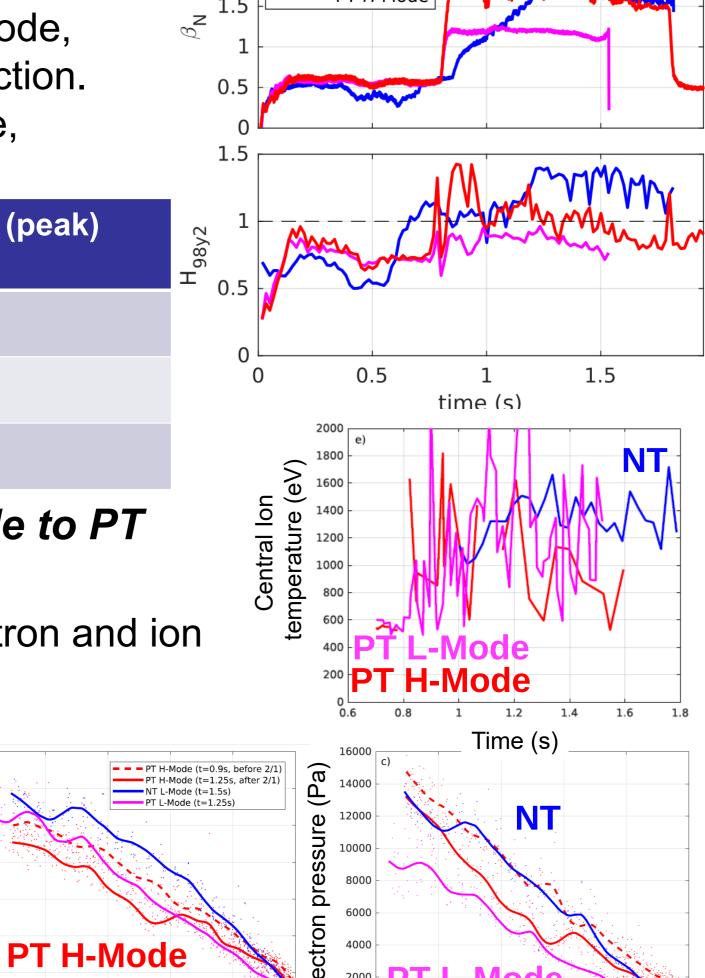
Density control is a significant challenge in the NT scenarios.

[5] MORGAN R. I., et al., Nucl. Fusion **65** (2025) 106030

Core performance comparison

MHD Activity:

- PT H-Mode: large m/n=2/1 tearing mode, causing significant confinement reduction.
- The NT L-Mode: weak m/n=2/1 mode, reduces confinement by up to ~15%,

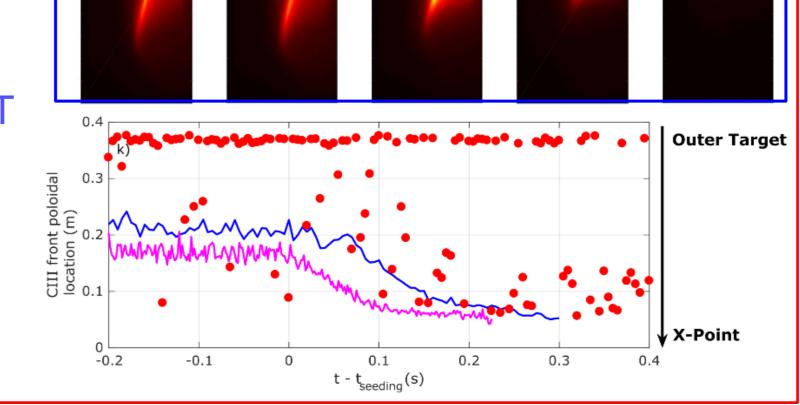

Config,	β _N stationary (peak)	H _{98,y2} station. (peak)
NT L-Mode	1.6	1.3
PT L-Mode	1.2	0.8
PT H-Mode	1.6 (2.1)	1 (1.4)

NT L-mode performance comparable to PT


H-Mode NT L-Mode shows higher central electron and ion temperatures than the PT H-Mode.

Electron pressures are similar between NT L-Mode and the pre-MHD PT H-Mode in the core.

No edge pedestal is observed in NT, unlike PT H-Mode.



- Achieving Detachment in High-Performances NT Plasmas
- Before N₂-seeding, peak OSP T_e:
 - ▶ 6 eV for both NT and PT L-modes.
 - > 8 eV for both PT H-mode (inter-ELMs)
- With N₂-seeding, all three scenarios show signs of detachment:
 - Drop in particle flux to OSP
 - > T_e reduction at outer target, peak below 5 eV (inter-ELMs for H-Mod
- CIII front, (~8-10 eV proxy):
 - ➤ In L-Mode NT and PT, smooth movement towards X-Point
 - ➤ In H-Mode PT, movement towards X-Point inter-ELMs, but goes back to OSP at each ELM
 - Interpreted as reattachment / burn- through
- Modest effect of N₂-seeding on NT performances, whereas PT H-Mode ultimately lost
- An X-Point Radiator is formed in the NT L-Mode

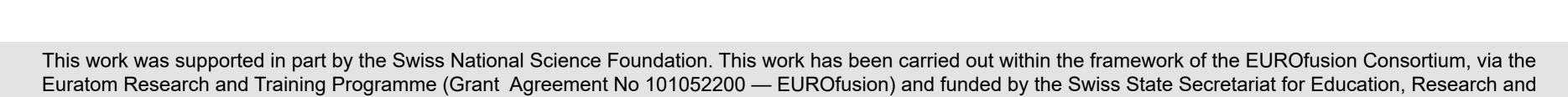
NT, t=1.6s

NT, t=1.7s

NT, t=1.5s

Conclusions

- Detachment of Ohmic NT plasmas more difficult than similar PT plasmas, ascribed in part to smaller SOL width.
- Successfully developed a stationary NT L-mode scenario with performance on par with a PT H-Mode.
- Demonstrated compatibility with a strongly detached divertor, with only a modest confinement reduction.
- Establishes NT as an attractive reactor regime by combining good confinement with a quiescent L-mode edge, avoiding ELMs.
- Future Work: Extend scenarios to higher input power (NBH and ECRH), coupling with Alternative Divertor Configurations (Snowflake) [7].


References

[1] CODA S., et al, Plasma Phys. Control. Fusion **64** (2022) 014004 [2] DURR-LEGOUPIL-NICOUD G, P.495, 50th EPS Conference on Plasma Physics, 2024. [3] DURR-LEGOUPIL-NICOUD G., et al, in preparation (2026) [4] LIM K., et al, Plasma Phys. Control. Fusion **65** (2023) 085006

[6] FAITSCH M., et al, Plasma Phys. Control. Fusion **60** (2018) 045010 [7] DURR-LEGOUPIL-NICOUD G., P.051, 51st EPS Conference on Plasma Physics, 2025. [8] TONELLO E., et al, Plasma Phys. Control. Fusion 66 (2024) 065006 [9] MOMBELLI F., et al Nucl. Fusion **65** (2025) 106012

Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European

Commission, or SERI. Neither the European Union nor the European Commission nor SERI can be held responsible for them.

