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A novel reinforcement learning (RL) based controller for shape and position control is 

tested on the DIII-D tokamak in various plasma regimes. The developed approach for controller 

design is flexible for any target specification as well as any diagnostic setup. Fusion Power 

Plant sets significant challenges for control due to the limited diagnostics set and reduced 

actuators efficiency. RL approach is a promising technology that enables high-precision robust 

control by bringing model-based features and fast analysis of complex sensor measurements in 

real time into the control loop. 

Developed methods to create such controllers employ reinforcement learning. With the 

developed machine-agnostic pipeline, training a single controller takes less than 24 hours. RL 

has gained significant attention in the fusion industry in recent years. It is a promising approach 

that offers the possibility to train optimal non-linear multiple-input and multiple-output 

(MIMO) controllers for real-time plasma control. RL has been applied for magnetic plasma 

control on TCV [1] and HL-3 [2] as well as for stability control on DIII-D [3], and for kinetic 

control on KSTAR [4]. The studies referenced in [2-4] rely on surrogate environments trained 

using historical data. 

The initial experimental results demonstrate that RL-controllers trained using this 

method are effective in both H- and L-mode 

plasma regimes and can handle discrete events 

like H-L transitions. Despite training episodes 

being limited to 1 second, the RL-controller 

has proven capable of maintaining plasma 

control for extended durations. An example of 

the plasma shot controlled by RL-controller is 

shown in Figure 1. 

Out-of-domain tests are carried out by 

varying injected neutral beam (NBI) power. 

The RL-controller trained on L-mode 

reference with low βN=0.37 and an average 0.9 

MW NBI power managed to control shape in 

the H-mode plasma with βN=2.4 and PNBI = 7.5 

MW. Increasing βN from 0.1 to 2.4 (by PNBI = 

0.0 to 7.5 MW) allowed for an investigation of 

the influence of plasma pressure on control 

errors. In shots with βN<0.6-0.7 shape and 

plasma position are controlled within a 2 cm 

range. However, in shots with high βN>2 errors 

increase up to 3 cm in shape and 8 cm in 

magnetic axis position, nearing the 

termination threshold implemented during 

 
Fig. 1. Plasma boundary shape evolution. Red 

contours show the evolution of the plasma boundary 

with a 20 ms time step. While each contour is drawn 

with transparency, their overlap shows a small 

dispersion around quasi-steady-state equilibrium. The 

target is given by a green line. 
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training. Improving control quality can be 

achieved by incorporating more precise 

models for auxiliary heating and current drive. 

The training utilized the Soft Actor-

Critic (SAC) algorithm [5], which employs 

two separate neural networks: the Critic and 

the Actor, as illustrated in Figure 2. The RL 

agent was trained using NSFsim [6], a 2D 

Grad-Shafranov equilibrium and 1D transport 

code, as the simulation environment. The 

Actor neural network, after training, functions 

as a non-linear MIMO RL controller designed 

for deployment within the Plasma Control 

System (PCS). It relies exclusively on signals 

available in real-time, such as magnetic 

probes, flux loops, and coil currents. To ensure 

robustness, these observations are artificially 

noised, with the noise dispersion calibrated 

based on an analysis of experimental signals. 

The Critic neural network has access to 

privileged information about the plasma state 

and its dynamics. It observes non-noisy signals from magnetic probes, flux loops, and coil 

currents, as well as the (R, Z) coordinates of the last closed flux surface, magnetic axis, and X-

point. This additional information allows the Critic to better estimate future rewards, thereby 

improving the training performance. The reward function is constructed using three 

components that quantify deviations from the given target state: (1) shape distance, (2) 

magnetic center distance, and (3) X-point distance. 

By using raw sensor signals instead of an external equilibrium reconstruction (1–1.5 ms 

on a 65×65 grid), the evaluation time is cut to <40 μs per cycle. This approach supports fine 

spatial grids, is scalable to larger devices, and is limited primarily by the simulation’s 

computational speed. Partial observability from kinetic terms is addressed by randomizing 

initial states, coil currents, gradient profiles (dp/dψ, FdF/dψ), temperatures, and Zeff, ensuring 

the RL controller is robust to disturbances in real experiments. 

The environment is equipped with an actuator layer to provide choppers with low-level 

control commands. The poloidal field (PF) coil system at DIII-D uses a common feeding power 

bus, which brings significant challenges to simulating plasma response during agent training. 

A model of choppers, together with power supplies, is used to accurately represent PF coil 

control. 
 

This work was supported in part by the US Department of Energy under DE-FC02–04ER54698 

and by Next Step Fusion 
 

References 

[1]. Degrave, J., Felici, F., Buchli, J. et al. Nature 602, 414–419 (2022) 

[2]. Niannian Wu, Zongyu Yang, Rongpeng Li et.al. arXiv:2409.09238 

[3]. Seo, J., Kim, S., Jalalvand, A. et al. Nature 626, 746–751 (2024) 

[4]. Jaemin Seo et al 2021 Nucl. Fusion 61 106010 

[5]. T.Haarnoja et.al. arXiv:1801.01290 

[6]. R. Clark et al. Fusion Engineering and Design 211 (2025) 114765 

 
Fig. 2. Training RL-agent with NSFsim environment. 

Critic and Actor neural networks observe state 

differently: Actor sees only noisy signals that are 

available from real-time diagnostics and Critic has 

non-noisy signals as well as additional information 

about plasma shape and position 
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