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ABSTRACT OUTCOME

*The velocity of the toroidal rotation in the peripheral plasma in the TUMAN-3M Comparison of the spectral shift of Cll lines in the shots 22041927 with L-H transition

tokamak was measured in two scenarios: co-current NBI H-mode and in ohmic H- and NBI (Fig.5.a, red line) and 22041921 with L-H transition but without NBI (Fig.5.b,
mode using Doppler-shifted Cll impurity line.

red line) shows that edge toroidal rotation evolution is approximately the same in

e Time evolutions and steady-state velocity values of the toroidal rotation velocity at these scenarios. Toroidal rotation evolves in time from zero in ohmic L-mode to a co-

the periphery are very similar in both cases, indicating that the effect of the L-H current velocity of 12.8 km/s during L-H transition and then flips to the counter-

transition prevails over the direct influence of the beam injection. . . .
P ‘ current 12.8 km/s in developed H-mode. It means that the rotation here is governed

eThe observed toroidal rotation is associated with the generation of negative radial - . , , . o
o _ . N by the L-H transition; the effect of injected atomic beam is negligible. A similar
electric field at the periphery during the L-H transition. o _ _ _ o
behavior is seen if one compares pure ohmic shot 22041921 with L-H transition

BACKGROUND (Fig.5.b, redline) and shot 22052506 without the transition but with NBI (Fig.4.b,

blue line). Again, L-H transition causes strong perturbation in the toroidal rotation

e In this paper the first results of toroidal rotation studies in the tokamak TUMAN-3M [1]
performed in co-current NBI regime with L-H transition and in a pure ohmic H-mode as well are

velocity, while the NBI does not affect the rotation.

. . . . . . 22041927 NBI + H-mode nm km/s
presented. The main goal was to identify the main processes responsible for plasma rotation and 40 - cnesesmm .~
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radial electric field formation, such as direct beam-plasma momentum transfer, fast ion losses or W T B
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e NBI leads to the mechanical momentum and radial electric field generation in plasma. The radial B s x
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electric field and plasma rotation studies have been conducted on various fusion devices [2, 3], £ 5 < I
= -0,5 4 -0,0140| -6,3291
but the mechanisms for generating plasma rotation and radial electric field have not yet been e |
o 1.0- co-current rotation 10,0280 | 12,6582
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e The mechanisms affecting plasma rotation profile are numerous (direct momentum transfer, 0 . - . . . - — —
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radial currents of uncontained particles, artificially created electric fields, plasma viscosity etc.)
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and manifest themselves differently in different spatial regions of the plasma and with different 658.3 nm) measured in 5 consecutive frames indicated in 5. ——
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The toroidal rotation measurements were # * % * %0 * The radial electric field may be estimated as E, ~-V.B = -V.B,a/(Rq) = -1.56 km/s,
performed using the Doppler-shifted g1 From top to bottom: plasma current, toroidal magnetic field, central chord- * This estimation is close to the results of HIBP measurements in ohmic H-mode in the
. . . . averaged density, H, emission near the gas valve and near the wall, NBI pulse

spectral Ilnes Of the Slngly |on|zed carbon current, relative shift of Cll line measured in five 11.4 ms frames (points in the TUMAN-3M [10’ 11]
(C+) Cll doublet (657.8 nm and 658.3 nm). center of each window are connected by a line for visibility). Points corresponding * On the other hand, this estimation neglects the possible impact from the diamagnetic

to the frames 2,3,4,5 and 6 are shown.

effect on the spectroscopic measurement of Cll line shift. Indeed, as is seen, there are
strong and changing gradients of C* ion concentration at the plasma edge.
* For accurate accounting for this effect a spatially resolved multi-point measurements are

The experimental layout included an
MDR-2 monochromator with an HS103H

TUMAN-3M |

CCD camera [7] installed in place of the needed.
exit slit; this setup has inverse linear
dispersion 1/D = 0.028 nm/pix. The A L .
| e The ASTRA+NUBEAM modeling indicates that in 121

observation line of sight was directed

the shot with higher density and beam power
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towards the beam and formed an angle of
61° with it.

‘ (shot 22041927) there is some torque applied

to the plasma in co-current direction and
deposited in the core region.

22041927 =137 ms (L-mode)

"y 2o s e At the plasma periphery this torque density is
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FIG.2. Experimental setup of Doppler spectroscopy on the TUMAN-3M small and even Sllghtly negatlve due to the

tokamak. The direction of NBI and plasma current is indicated by red and

radial current caused by fast ion losses.

2 green arrow, respectively. Dark red region shows the sample volume of plasma 0.0 4
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- FIG.3.(a) Electron density profile evolution reconstructed from the microwave
interferometry data in the shot 22041927 with ohmic L-H transition and NBI
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