

Overview of The Physics Design of The EHL-2 Spherical Torus for Proton-Boron Fusion

HUASHENG XIE*, YUNFENG LIANG*, YUEJIANG SHI*, XIANG GU, XINCHEN JIANG, LILI DONG, WENJUN LIU, XUEYUN WANG, DANKE YANG, TIANTIAN SUN, YUMIN WANG, GANG YIN, MUZHI TAN, ZHI LI, JIANQING CAI, XIANMING SONG, JIAQI DONG, HANYUE ZHAO, BING LIU, DI LUO, YINGYING LI, XIANLI HUANG, HAOJIE MA, GUANG YANG, ZHENGYUAN CHEN, DONG GUO, SHAODONG SONG, YUENG-KAY MARTIN PENG, YUANMING YANG, MINSHENG LIU, AND THE EHL-2 TEAM

ENN Science and Technology Development Co., Ltd., Langfang 065001, P.R.China

*xiehuasheng@enn.cn, y.liang@fz-juelich.de, yjshi@ipp.ac.cn

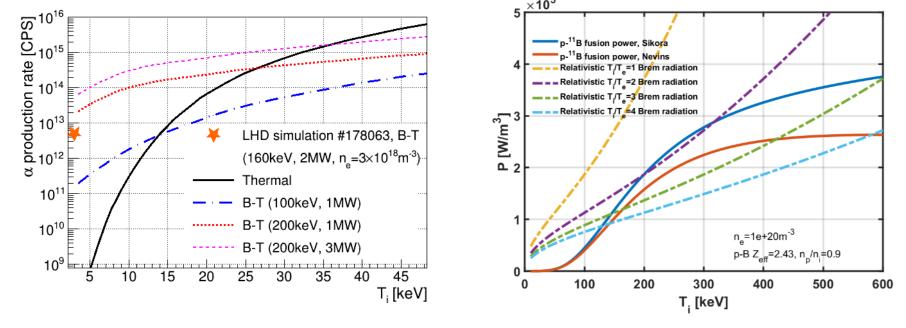
IAC-2989

Abstract

- A roadmap for p-11B fusion based on spherical torus has been developed [1], with the next generation device named as EHL-2 under physics and engineering design, here EHL is abbreviation for ENN He-Long which means "peaceful Chinese Loong".
- The main target parameters of EHL-2 include $R0\sim1.05m$, $A\sim1.8$, $B0\sim3T$, Ti0>30 keV, Ip=3 MA, and Ti /Te >2 [2]. We present the EHL-2 physics design progress here.
- The commissioning of the upgraded fusion device EXL-50U is scheduled for 2024, while the construction of EHL-2 is estimated to be completed by 2026.

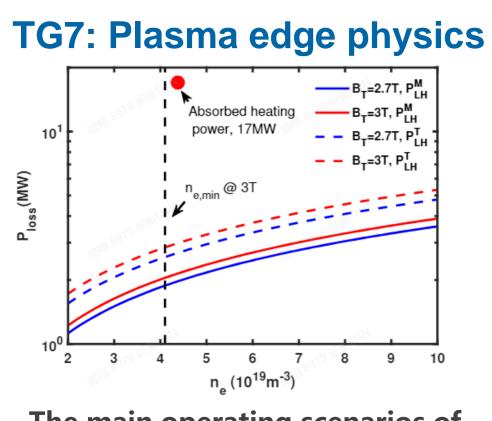
Major physics design results

TG10: Charged particle power conversion

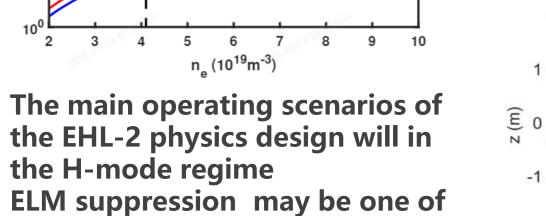

- p-¹¹B: abundant, accessible, economical & environmentally friendly
- Alpha particles can generate electricity power directly

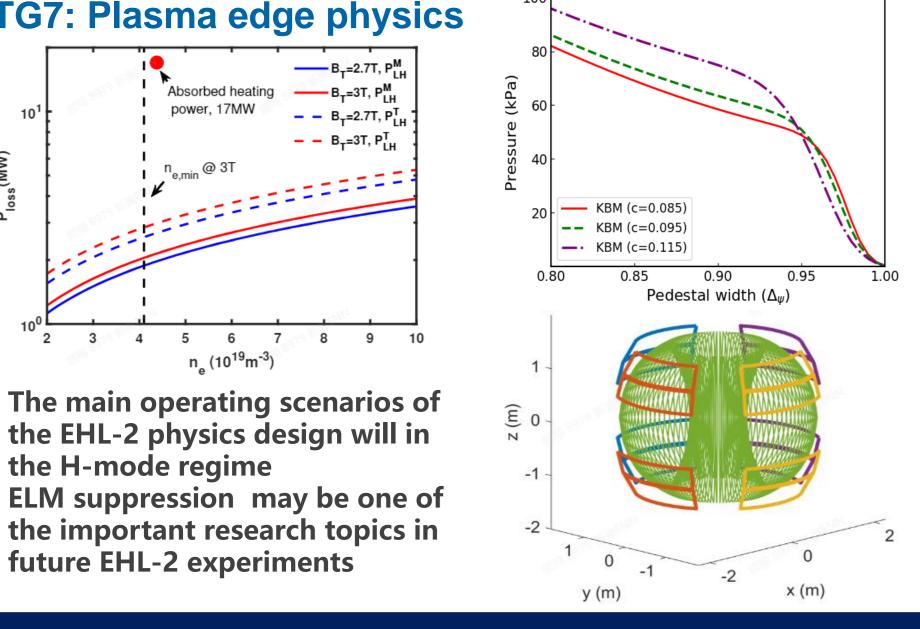
TG9: Disruption prediction and mitigation

Disruption characteristic parameter	Value
Minimum current quench time	4.8 ms
Minimum thermal quench time	0.1 ms
axisymmetric vertical force by halo current	4.05 MN
Eddy current force on single inboard tile	64.8 kN
Eddy current torques on single inboard tile	3.24 kN m
maximum energy deposition	$200 MJ \cdot s^{-0.5} \cdot m^{-2}$

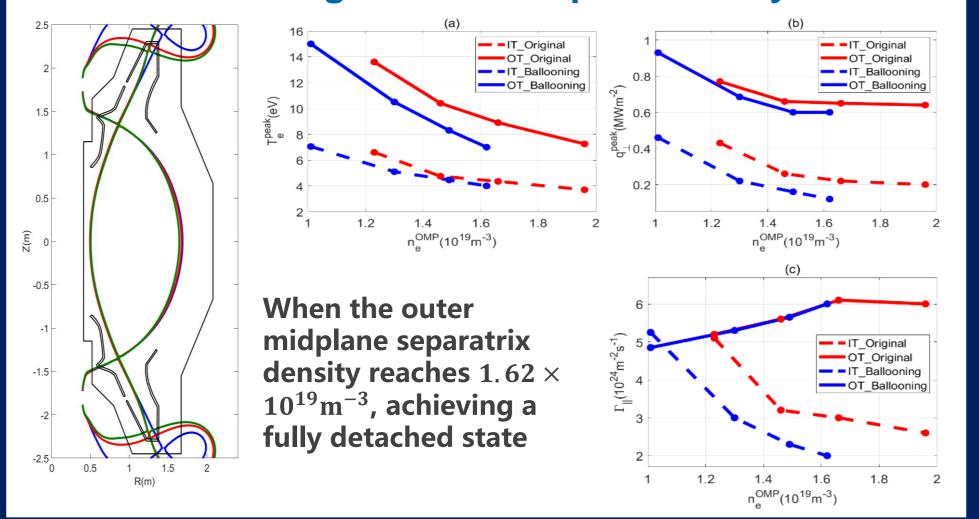

Disruptions pose a significant threat to the device. MGI、SPI and accurate disruption prediction is important

TG8: p-11B reaction physics

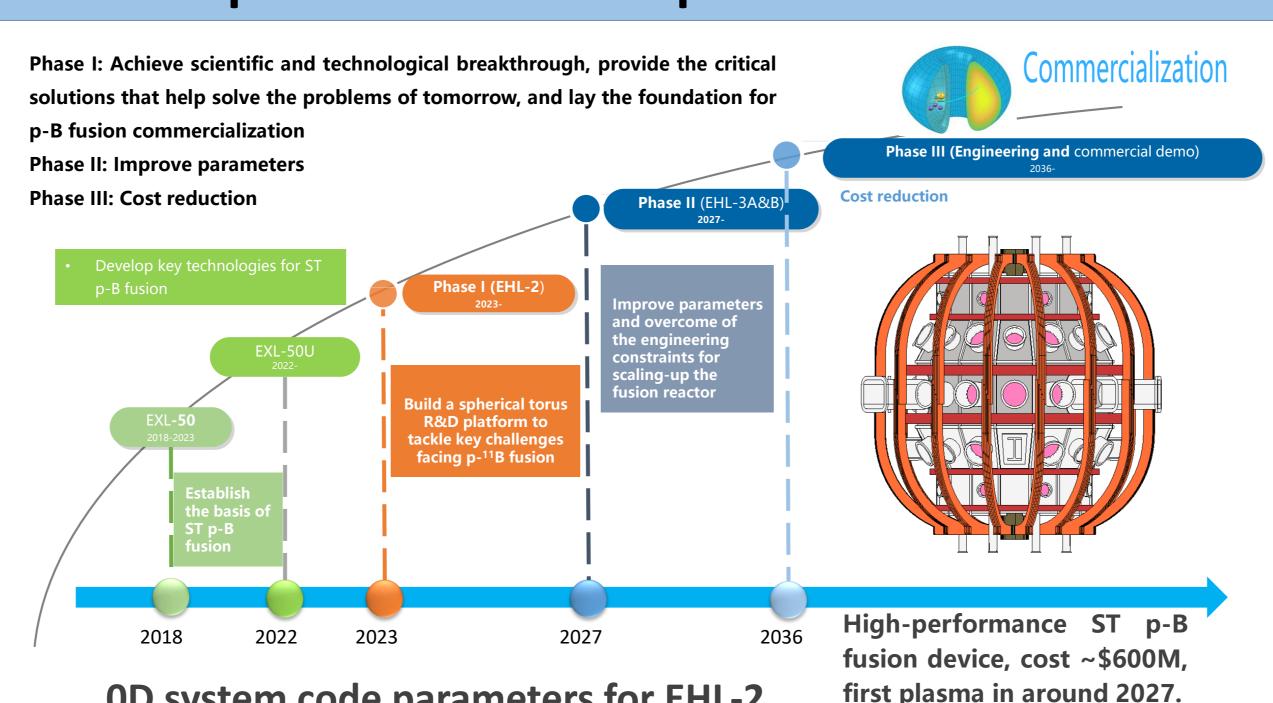



EHL-2 conditions could be sufficient for investigating p-11B thermonuclear reactions, deepening our understanding of burning plasma physics.

	Thermal	reaction	Beam-thermal reaction (200 keV, 1 MW, hydrogen)			
	PTC	TGCO	PTC	TGCO		
α production rate (/s)	1.4×10^{15}	1.6×10^{15}	5.3×10^{14}	5.4×10^{14}		
Fusion power (kW)	~0).7	~0.25			



future EHL-2 experiments



TG6: Heat loading control and particle recycle

ENN's ST p-B fusion roadmap & EHL-2 mission

OD system code parameters for EHL-2 first plasma in around 2027.							
Parameters	EHL-2 (Ver1.0)	EHL-2 (Standard)	EHL-2 (Low)	EHL-2 (Medium)	EHL-2 (High)	EHL-2 (Goal)	
Plasma current I _p (MA)	3.0	3.0	2.5	2.5	3.8	5.5	
B _T (T)	3.0	3.0	2.0	2.0	3.0	3.0	
Confinement time $ au_{\rm E}({ m s})$	0.5	0.6	0.3	0.5	2.5	1.2	
β	11%	11%	10%	14%	14%	21%	
β_{N}	6.17	6.09	4.7	6.39	6.35	6.47	
β_{p}	3.2	3.1	1.9	2.6	2.6	1.8	
Major radius R (m)	1.05	1.05	1.05	1.05	1.05	1.05	
Aspect ratio A	1.85	1.85	1.85	1.85	1.85	1.85	
Avg./peak T _i (keV)	-/30	-/35	-/25	-/34	-/50	-/50	
Avg./peak n _e (m ⁻³)	-/1.44e20	-/2.22e20	-/1.33e20	-/1.33e20	-/2.05e20	-/1.66e20	
Safety factor q	3.83 (5.55*)	3.83 (5.55*)	3.07 (4.45*)	3.07 (4.45*)	3.03 (4.4*)	2.09 (3.03*)	

13.5

0.632

Engineering &

Physics low

Even if both the engineering (Bt = 2 T) and physics (Ip = 2.5 MA) parameters are low, the equivalent D-T fusion gain can still larger than 1

• Mission: verify the thermal reaction rate of p-11B fusion, establish the experimental scaling law at 10's keV ion temperature, and provide a design basis for subsequent experiments aimed at testing and realizing p-11B fusion burning.

Task groups, scenarios and experimental plan

0.598

Overall best

0.657

Sn=0.4, ST=0.8

Density limit n_{avg}/n_{gw}

Heating power P_{heat}(MW)

ST H factor H_{ST}

Comments

Integrated 11 task groups to do the physics design and engineering iteration • high ion temperature scenario: Achieve high ion temperature $(T_{i,0} \ge 25 \text{keV})$ plasma with a high T_i/T_e ratio $(T_i/T_e \ge 2)$;

0.36

1.25

Engineering &

Physics high

Engineering low &

Physics high

Design three scenarios:

0.25

0.908

*ST q, and Sn=0.4,

 high-performance steady-state scenario: Demonstrate fully non-inductive current drive $(I_{ni}/I_p = 100\%)$ of highperformance plasma with a fraction of bootstrap current component, I_{bs}, larger than 70%;

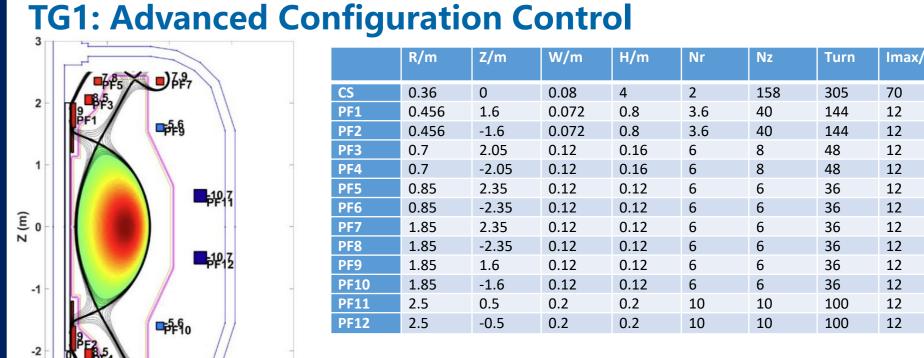
• high triple product scenario: Confirm the ST high confinement scaling law and validate transport modelling in a wider range of plasma parameters $(H_{ST} \geqslant 0.5, \tau_E \geqslant 0.5s)$.

ICRH (MHz/ LHW (GHz/ Total

		Diverto	rto (keV/5s)		(GHz/5s)		5s)	5s)	heating			
	Phase	Estimated Time	Goal	r	60	80-100	200	50	105&140	30-75	2.45-5	power
	ı		 Engineering test: toroidal field/control/ diagnostics, etc. Physics test: ECRH startup 1 MA operation 	limiter				1 MW	3 MW			4 MW
La faila I	(1 mo.) Maintenance/Upgrade											
Initial Research (1 yr)	II	3 mo.	•2 MA/2 T	slab	4 MW			1 MW	4 MW			
			 Achieve long-leg divertor configuration 									9 MW
			•Ti > 3 keV, Ti/Te >2 (NBI heating validation)									
	(1 mo.) Maintenance/Upgrade											
	Ш	3 mo.	High-ion-temperature scenario validation: Ti > 10 keV, Ti/Te >2		4 MW	5 MW		1 MW	6 MW			16 MW
			(2 mo.)	Maintenar	nce/Upgr	ade						
Integrated Research (2	I	10 mo.	 •Ti > 25 keV, Ti/Te >2 •H–B thermonuclear reaction validation •High-performance scenario validation: fully non-inductive current drive 	closed	4 MW	10 MW	3 MW	1 MW	6 MW			24 MW
yr)	(2 mo.) Maintenance/Upgrade											
	II	8 mo.	•ICRH–NBI synergy validation		4 MW	10 MW	3 MW	1 MW	6 MW	2 MW		26 MW
			(2 mo.)	Maintenar	nce/Upgr	ade						
Extended Research (>1 yr)			•3 MA; 3T									
			•Ti > 35 keV, Ti/Te >2									
			•High triple-product scenario development, ST scaling law validation		4 MW	10 MW	3 MW	1 MW	6 MW	5 MW	2 MW	31 MW
			•H–B fusion gain validation									

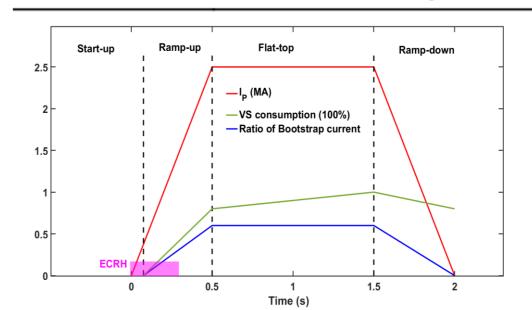
Engineering feasibility assessment

Status of subsystem engineering design :


-- Magnet coil: The concept and preliminary analysis design are temporarily feasible, and there are medium to high level risks in joint design. The Preliminary design and proof-of-principle testing of cooling system have been completed. -- Vacuum, Cryostat, internal components: Preliminary design has been

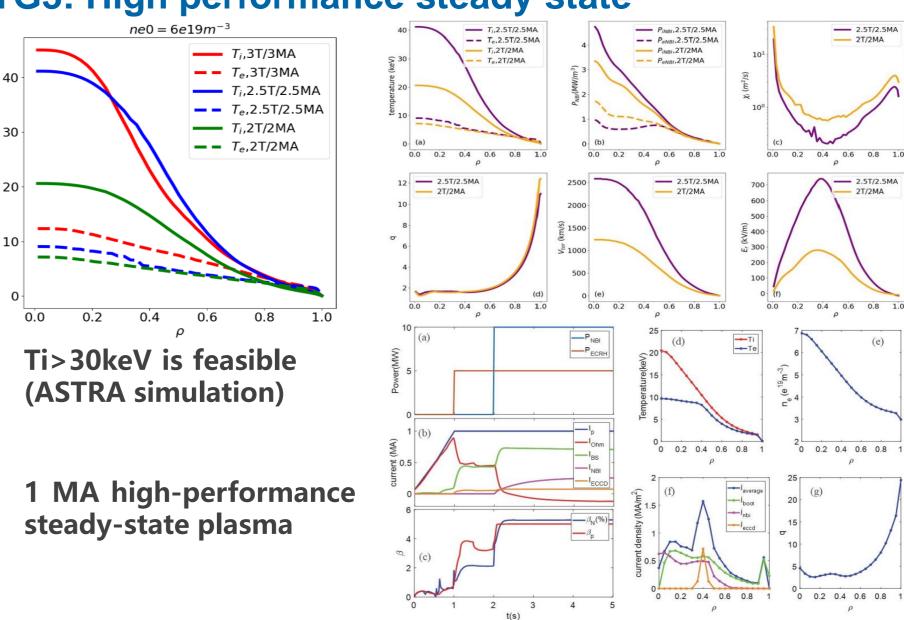
completed. -- Plasma Heating & Current Drive system: The 200 keV N-NBI system is

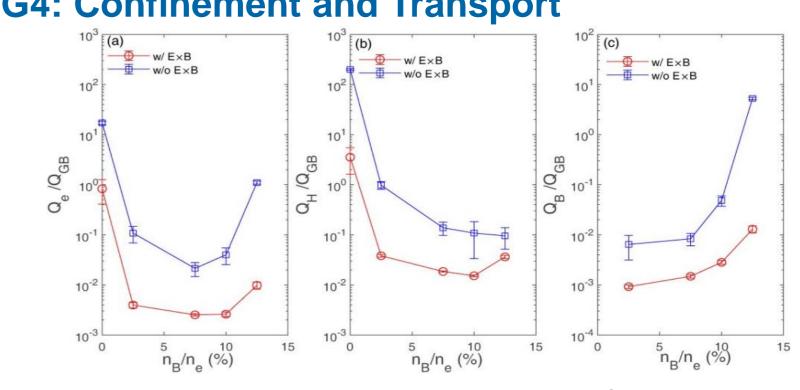
currently under design and prototype testing. -- Power: Preliminary optional configuration plan for pulse generator units and power grid capacity expansion plan.



Major physics design results

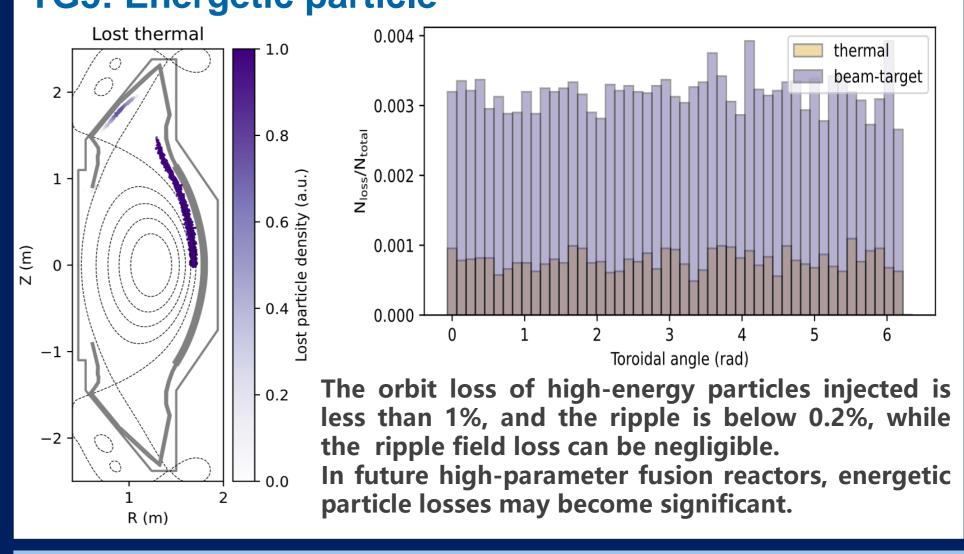
A set of PF system and reference XPT configuration has been designed. The PF system also enables Super-X, and conventional double null divertor configurations


TG2: Heating and CD H&CD system EHL-2 parameters 2×5 MW@80–100 keV/5 s 1×3 MW@200 keV/5 s 1×1 MW@50 GHz/5 s 6×1 MW@105&140 GHz/5 s (dual frequency) 5 MW@30-75 MHz/5 s IC (Phase II) 2 MW@2.45-5 GHz/5 s LHW (Phase II)


The system will provide a total injection power of 31MW. NBI for high Ti and Ti/Te, ECRH

Duration time limited by Copper conductor TF, PF and CS

TG3: High performance steady state



TG4: Confinement and Transport

Gyrokinetic(GENE) simulation shows that the total beta of hydrogen-boron plasma is diluted, which can effectively suppress the ion heat flux.

TG5: Energetic particle

Conclusion and outlook

- A new ST EHL-2 for p-B fusion is designed, and details can be found at Special issue "Physics design of the EHL-2 spherical torus", Plasma Sci. & Tech.
- Several unique & significant challenges to address:
- establish a plasma with extremely high core ion temperature (Ti,0>30keV), and ensure large ion-toelectron temperature ratio (Ti,0/Te,0 > 2), and boron concentration of 10-15% at the plasma core;
- realize the start-up by non-inductive current drive and the rise of MA-level plasma toroidal current. Due to the volt-seconds that the central solenoid of the ST can provide are limited;
- achieve divertor heat and particle fluxes control including complete detachment under high P/R (>20MW/m) at relatively low electron densities.

Reference

[1] M. S. Liu, H. S. Xie, Y. M. Wang, et al., ENN's Roadmap for Proton-Boron Fusion Based on Spherical Torus, Phys. Plasmas 31, 062507 (2024) [2] Y. F. Liang, H. S. Xie, Y. J. Shi et al, Overview of the physics design of the EHL-2

spherical torus, Plasma Sci. Tech., 27, 2, 024001 (2025).

