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Abstract

= Electron cyclotron (EC) heating is useful to assist start-up of large
superconducting tokamaks with low loop voltage

= Trapped-particle configuration (TPC) that confine collisionless
electrons was found to be effective for EC assisted start-up

= Fokker-Planck simulation and extended MHD equilibrium
reconstruction was used to analyze the electron distribution function
before and around closed-flux-surface formation

= Finite-orbit and relativistic effects were included

Assistance by EC waves is useful for low loop
voltage start-up of large superconducting tokamaks
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EC assisted start-up
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Phase space for Ohmic breakdown

Improvement of EC assisted start-up with TPC*
observed in devices including KSTAR' and JT-60SA?
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Electron orbit in TPC of TST-2

assisted start-up
— Robust start-up with compact CS
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Tokamak configuration forms through interactions

of waves, fast electrons and MHD equilibrium
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DC E-field

* Fast electron transport by Fokker-Planck simulation

» Extended MHD equilibrium reconstruction to include fast electron
current

Collisionless fast electron distribution described with
the orbit-averaged distribution function f(K)

» Constants of motion used for orbit labels K = (£, A, Py)
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FEM software COMSOL* was used to implement
the orbit-averaged Fokker-Planck simulation'

Transport drive

* Coulomb collisions with
background plasma

* Quasilinear diffusion by waves

* Inductive DC electric field

Boundary conditions

* f =0 at limiter

= No flux otherwise

Electron distribution in TST-2
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Equilibrium reconstruction was performed using
extended MHD with kinetic electron current”
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Extended MHD equilibrium reconstructed from
vacuum to closed-flux-surface formation

= Bulk plasma force balance
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P(v): bulk pressure
F(v): bulk poloidal current

* Kinetic toroidal current jy4(R, 7)
= Kinetic poloidal current G(R, Z)
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f(K) parametrized analytically to be used in the
extended MHD equilibrium reconstruction

= Analytic orbit-averaged distribution function
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T . fast electron temperature
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Agpc = L . resonant velocity pitch
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0N = 0.1Agc  : width in velocity pitch
Prc . qyp at EC resonance on midplane
oP . difference in g from top limiter to midplane

= Drift-kinetic current evaluated from the three moments 7| PH and P|
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TST-2 spherical tokamak
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Dashed curves: vacuum field

= Consistent MHD equilibrium field and global electron distribution
function that match the magnetics measurements were obtained

* Closed-flux-surfaces formed by kinetic electron current

Fast electrons were generated around the resonant
velocity pitch

Major radius 0.36 m
Minor raduis 0.23 m
Toroidal field <0.16 T
Plasma current <27 kA
Electron density <1x108m~3
Electron temperature <100eV
LH power (200 MHz) 100 kW x 4
Discharge duration 80 ms

- Ohmic operation: 110kA, 2 x 101°

RF (CS-free) operation parameters

m—3, 500 eV

Faster plasma current rise was observed for start-up

with TPC compared to FNC
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Phase space distribution at 1 keV
* Resonant velocity pitch Apc

— turning point at EC resonance layer

* Loop voltage shifted the distribution to smaller velocity pitch A

Electron distribution expanded vertically when
loop voltage was applied
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= Time of closed-flux-surface formation slightly earlier for the TPC

Higher plasma current was achieved with TPC
compared to FNC at low neutral pressure
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* Loop voltage: transport towards smaller velocity pitch A
= EC waves: transport towards larger velocity pitch up to Agc

* Improved synergistic acceleration at greater P¢/q

Ohmic heating localized around EC resonance layer
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= Neutral pressure scan at:

EC power: 5kW (~8kW /m3)
CS flux swing: 0.013 Vs

= Start-up substantially improved with TPC at low neutral pressure

— strong impact of orbit optimization in the collisionless regime

= Small difference between TPC and FNC at high pressure

— weak magnetic configuration dependence in the collisional regime
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= Efficient DC E-field acceleration of EC generated energetic electrons

* EC heating dominated over Ohmic heating during early start-up phase

Conclusions

Extended MHD equilibrium reconstruction was applied to EC
assisted Ohmic start-up discharge

Equilibrium field and electron distribution function consistent with
magnetics were reconstructed

Kinetic electron current was sufficient to close flux surfaces

EC heating dominated over Ohmic heating up to closed-flux-surface
formation
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