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ITER operators will leverage predictive models to plan upcoming operational phases, rundays, and discharges. 
These models are developed based on experience with previous devices, and will ideally be continuously updated as 
ITER data is collected. However, the reliability of even state-of-the-art simulations for predicting and extrapolating 
to a fusion-grade plasma is an open question; and it is not obvious how to rigorously update models with data.  
 
Here we present the results from two recent publications [1,2]. A first-of-its kind large-database verification of 
state-of-the-art integrated modeling (ASTRA[3]/TRANSP[4] with TGLF[5]) demonstrates that quantitative 
predictions of transport models perform no better than simple benchmarks involving no physics and few to no 
fit parameters. In contrast, a fully data-driven neural network approximation yields >20% better results than 
these benchmarks. Nonetheless, the fully data-driven approach lacks generalizability: for predicting sufficiently 
far out of the distribution of training data, the neural network fares no better than the integrated physics modeling. 
What is more, training on data from multiple machines (DIII-D+AUG) to attempt to increase generalizability 
yields no improvement. Therefore, a variety of other techniques for combining the generalizability of physics 
models and the accuracy of data-driven models are tested, and a “meta-learning” model trained for the explicit 
task of extrapolation demonstrates a >10% improvement in performance beyond physics or data alone. This 
approach can be retrained in milliseconds and is interpretable, which could yield not only improvements in models 
used by ITER operators, but also a robust mechanism for continuously updating models as ITER data is collected. 
 

Large-database verification and validation of ASTRA/TRANSP with TGLF: profile predictions no 
better than benchmark two-parameter regression: As defined by the ITER expert group [6], a popular metric for 
performance of integrated modeling is 
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temperature measurement. Many studies have evaluated this error for core temperature predictions made by 
state-of-the-art transport models like TGLF on a few hand-picked shots [7]. By contrast, this work evaluates both 
ASTRA and TRANSP on  more than 100 DIII-D discharges to ascertain statistical significance, and contextualizes 
these numbers with reasonable benchmarks. This work employs a “Profile Consistency” benchmark model in which 

profiles are assumed to exponentially grow between the edge 
(normalized flux coordinate ) and the core ( ); ρ = 0. 8 ρ = 0. 2
and assumed to be flat at the very center ( ). Only ρ = 0 − 0. 2
one parameter for each of the two (electron and ion) 
temperatures must be fit to predict the entire core profile given 
the edge value: an estimate for T( ) given T( ). ρ = 0. 2 ρ = 0. 8
Figure 1 shows an example case for these predictions. For the 
standard validation exercise of core profile prediction, ASTRA 
and TRANSP have no statistically significant advantage over 
the Profile Consistency benchmark.  
 
Figure 1: Timeslice 20ms after neutral beam power is rapidly 
increased from 0 to 4MW in DIII-D discharge 148914, wherein 
temperature begins to increase. Consistent with most core 
profile validation exercises, an experimentally measured value 
at the  flux surface is used for the boundary condition; ρ = 0. 8
and error is evaluated only outside the safety factor q=1 surface. 



Large-database validation of ASTRA + data-driven models for time-dependent predictions: physics 
and extrapolated machine learning underperform; combining data+physics yields improvement: Like any 
experimental campaign, ITER will have a staged set of operations during which plasma parameters are increased. 
For example, the 2024 ITER research plan describes the anticipated steps in plasma current from 500kA to 15MA 
over 2.5 years of pre-fusion operation [8]. Neural networks exclusively trained on experimental data have been 
demonstrated to perform well within distribution [9], but for extrapolation to new regimes it is usually assumed 
physics-based models are required. This work gives some quantitative sense of this by separating DIII-D discharges 
into regimes of plasma current. A machine learning model trained for <0.9MA is tested for >1.3MA (“far 
extrapolation”); a model trained for <1.2MA is tested for >1.3MA (“near extrapolation”); and a model trained for all 
cases is tested for >1.3MA (“interpolation”). The task of the model, analogous to transport models, is full-profile 
(electron and ion temperature) time-dependent predictions: given initial profiles and a trajectory over time for 
actuators, predict the trajectory of profiles. The “Constant” benchmark employed in this case is to assume profiles 
remain fixed at their initial-time values. It is found that physics models and “far extrapolation” machine learning 
models both perform quantitatively worse (red) than this simple “Constant” benchmark. Meanwhile, “near 
extrapolation” machine learning performs neither statistically significantly worse nor better than the benchmark 
(yellow). A variety of mechanisms to improve the generalizability of models are therefore attempted: (1) 
supplementing DIII-D training data with AUG data (including at higher plasma current), (2) transfer learning from 
simulations to experimental data, (3) adding contextual simulation information (such as estimated deposited power 
profiles) as additional model inputs, and (4) “meta-learning” for the explicit task of extrapolation. Of the four 
methods, meta-learning is uniquely able to provide a statistically significantly better (green) result than the 
“Constant” benchmark. Based loosely on “stacked generalization” [10], in this method the training set is split into 
pieces such that extrapolation can be simulated: the training set of <1.2MA is split into <0.9MA and 1.0-1.2MA. A 
variety of models can be trained on <0.9MA data, then a “meta” model takes as inputs the predictions from each 
model and outputs a single prediction. This meta model is trained on 1.0-1.2MA, and in the simplest case (shown 
here) is represented by a weighted average of all models, i.e. weights  are learned such that  α
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learning model, and the other 30% is distributed among physics predictors like a TGLF-nn-like [11] model and a 
GyroBohm-like [12] model. The machine learning model is 
then retrained on the entire <1.2MA training set, and the 
weighted sum is taken with this new model to predict >1.3MA. 
 
Figure 2: ITER 1999 “sigma” error metric for various 
machine learning, physics, and meta predictors. Physics-based 
predictors and machine learning extrapolating far out of 
distribution (from plasma current <0.9MA to >1.3MA) 
perform no better than the simple benchmark of holding 
profiles fixed at their initial values; extrapolating machine 
learning slightly (from plasma current <1.2MA to >1.3MA) 
does better; but combining a near-extrapolated machine 
learning prediction with physics predictions using a 
meta-learned model yields significantly better results, closer to 
performance of a machine learning model predicting within the 
distribution upon which it was trained (all plasma current). 
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