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II.  the normalized gradients of density and ion temperature

a/Ln = -a(dlnne/dr)

a/LT = -a(dlnTi/dr)
determine particle and heat transport in W7-X.
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• The compatibility of impurity accumulation with improved energy confinement has
been observed in various W7-X scenarios. These HP phases are developed using

different plasma fueling and heating methods; all exhibit a steepness of the ne

gradient (a/Ln >1) and a reduction in the ηi ratio (<1.5) compared to normal ECRH
scenarios.

• The analysis shows that during these HP phases, the radiation fraction in the core
(<0.5) remains low (frad,core< 15%) and the emissivity reaches its maximum value 10–

20 cm away from the plasma center. This suggests that limiting the edge impurity

influx (especially metallic elements) and optimizing turbulence and neoclassical
transport to achieve HP plasmas with tolerable impurity dynamics in W7-X remain

key research topics.

CONCLUSION

This study reports on the recent experimental observations on impurity

accumulation and radiation dynamics in advanced scenarios with improved

energy confinement time (E/ISS04 ≥ 1; defined as high-performance (HP)

phase) in the stellarator Wendelstein 7-X [Grulke, O., this conference].

The HP scenarios investigated include

 low-power ECRH plasmas fueled (only) with recycled neutral gas

 plasmas with pellet injections, and 

 combined ECRH+NBI heating. 

Bolometer tomography reveals significant plasma radiation in the inner

plasma region (0.5), for which VUV spectroscopy identifies traces of low-Z

elements (mainly C from graphite divertor units) as well as metallic impurities

(such as Fe, Cu, and W from plasma facing components (PFCs)). This

pronounced core impurity radiation appears under plasma conditions with a

steeper density gradient, which suppresses turbulence in the W7-X plasmas.

It is suggested that this behavior of impurities is related to neoclassical

impurity convection in ion-root regimes, which thereby gains in importance.

An increased electric field strength in the ion-root has been demonstrated

experimentally and theoretically. The investigations conducted so far on

impurity transport confirm the role of neoclassical impurity convection.
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INTRODUCTION
I. Plasma confinement in most gas-fueled, ECRH plasmas is strongly influenced by

turbulence transport with the following characteristics:

 Edge-localized impurity radiation, which promotes highly radiative plasma detachment.

 The neoclassically predicted impurity accumulation in the ion root region is not visible;.

Impurity transport time << neoclassical predictions (~s)

 Energy confinement time lower than ISS04 scaling (E/ISS04 < 1)

 Ion temperature limits at Ti~1.5 keV

[Geiger, B., et al., NF, 2019] [Langenberg, A., et al., PoP, 2020] [Wegner, T., et al., JoPP, 2023]

[Beurskens, M.N., et al., NF, 2021] [Ford, O., et al., NF, 2024]

[Zhang, D., et al., PRL, 2019] [Jakubowski, M., et al., NF, 2021] [Feng, Y., et al., NF, 2021]

[Yamada, H., et al., NF, 2005] [Fuchert, G., et al., NF, 2020]

 ’stability valley’ conditions

 Higher a/Ln suppresses ITG turbulence, altering transport 

and improving plasma confinement. 
[Klinger, T., et al., NF, 2019] [Baldzuhn, J. 2020, PPCF] 

[Bozhenkov, S., NF, 2020] [Bähner, J.-P., et al., JoPP, 2021]

[Alcusón, J., et al., PPCF,2020]

[Romba, T., et al., NF, 2023]

ηi= (a/LT )/(a/Ln) ​≈1

Observations of core plasma radiation enhancement 

with density gradient (~0.5)
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bolo =<𝜀𝑐ℎ_𝑐𝑜𝑟𝑒>/<𝜀𝑐ℎ_𝑒𝑑𝑔𝑒>  1.5
chord brightness 

<𝜀𝑐ℎ>=Sch/(LLoS*Etendue) frad,0.5 =Prad,0.5(<0.5)/Pheat> 5%

Impurity accumulation in plasma scenarios with 

improved confinement
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Scenario 1: Low-power ECRH w/o gas-puff (XP5)

Scenario 2: Pellet injection fueled ECRH plasma (e.g. XP38)

Scenario 3: Plasmas with combined NBI+ECRH(XP72)
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Observations:

- Enhanced radiation in the inner plasma region

mainly contributed by line emissions of metallic impurity ions 

such as Cu and W.

- C6+ central peaking confirms neoclassical impurity 

accumulation, but does not contribute significantly to Prad. 

- Er profiles show an increased ion-root amplitude with 

qualitative agreement between experimental results and 

neoclassical  predictions.

Impurity transport study using STRAHL code
[Behringer, K., 1987] [Dux, R., 2006]

- Simulations of impurity radiation in the HP phase of low-power ECRH plasma 
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[Zhang, et al., 2023, PPCF]

[Wappl et al 2025 PPCF]

 Determined convective and diffusive 
transport coefficient (V and D) show 
neoclassical features (<0.6)
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[Pablant, N., NF,2020]

[Langenberg, A, RSI, 2019]
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[Zhang, et al., 2023, PPCF]


