

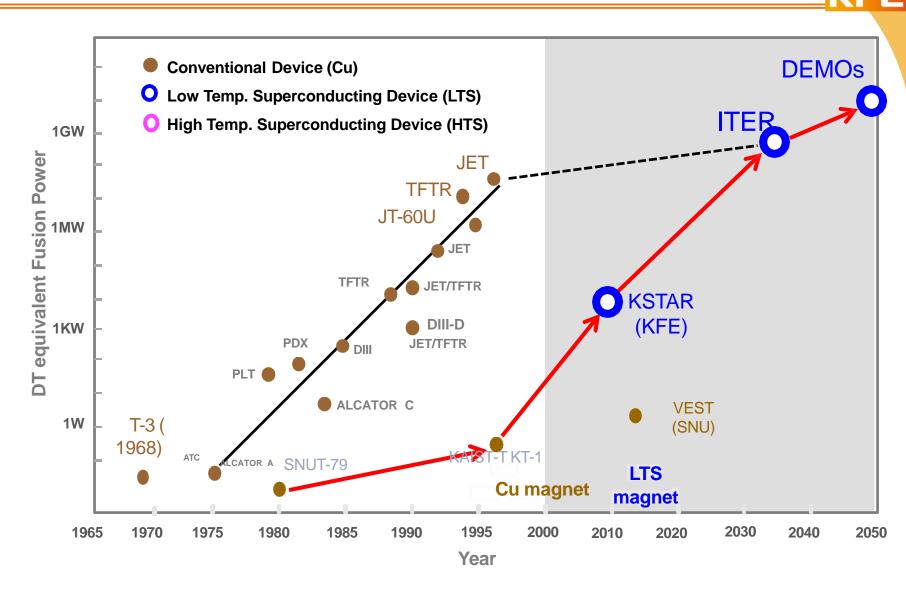
Establishment and Progress of Korean Fusion Reactor Design Activities: A Coordinated National Approach

Presented by Jae-Min KWON*

J. Kang, B.G. Hong, N. Her, W. Kim, Y.K. Oh, S.W. Yoon, G. Jo, G. Shin, S.-H. Hahn, and KFE researchers and domestic and international collaborators in Korea's fusion energy development.

KFE

1. Introduction of Korea National Fusion R&D


- 2. Strategy & Design of the K-DEMO
- 3. Strategy for Innovative Compact Pilot Device (CPD)
- 4. Preliminary Design Study for the CPD
- 5. Summary and Future Perspective

I. Introduction of Korea National Fusion R&D

Introduction to National Fusion R&D in Korea

- The Korea National Fusion R&D has made steady progresses since the start of the KSTAR project in 1995.
- Fusion R&D is progressing under "Fusion Energy Promotion Act".
- Korean government establishes and updates the master plan for the Promotion of Fusion Energy Development for every 4 years.
- We are now in the middle of the period for the 4th master plan: 2022 ~ 2026.

Global Fusion R&D and Korea's mid-entry strategy (1995)

DEMO Design Task Force

KFE

- DEMO Design TF was established under the 4th Master Plan in July, 2023.
- Categorized into 12 sub-tasks, the System Integration Design Team organizes and integrates them.
- TF members are from National Labs, Universities, and Private Companies.
- Design Roadmap

- Pre-CDA: 2023 ~ 2026

- CDA: 2026 ~ 2030

- FDA: 2031 ~ 2035 National Fusion Energy Committee **Executive Committee** (MIST) System Integration Design Team (including project management) WG) WG WG WG WG WG WG WG WG Safety & Control & Breeding Core Superconducting Heating & Assembly & BoP Building Divertor Fuel cycle Main Devices Current Drive Maintenance Licensing Diagnostics Plasma Magnet Structure

II. Strategy & Design of the K-DEMO

Top Tier Requirements for K-DEMO

KFE

As the basis for K-DEMO design, Korean Government approved in Feb. 2023.

[Top Tier Requirements]

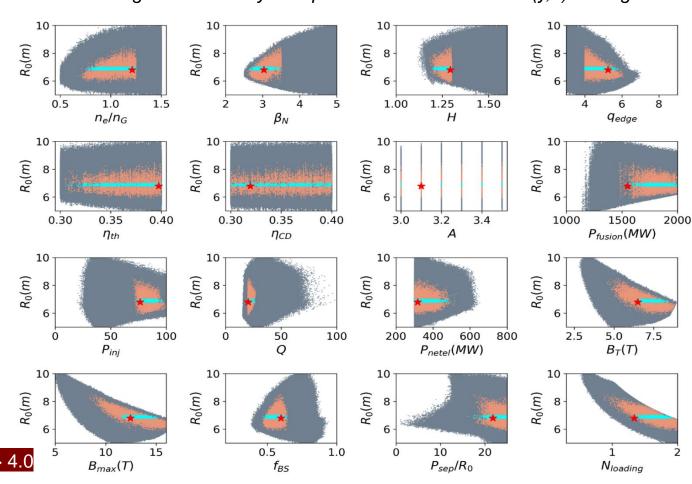
- ① Max. Electrical Power > $500MW_e$ (~1,500 MW_{th})
- **②** TBR (Tritium Breeding Ratio) ≥ 1
- **③ Verification of Intrinsic Safety for Fusion**
- **4** Acquisition of data for Economic Evaluation

[Major Design Requirements]

- ① Major radius (R) < 7m
- ② Reactor operation rate >60%
- **③** Reactor life >40 years
- **4** Seismic Safety up to 7.0 Richter scale (0.3g)

Parameters	Designed	Remarks	
Major radius, R ₀	~ 6.8 m	6.8 m as reference	
Minor radius, a	~ 2.2 m		
Elongation, κ	~ 2.0	κ ₉₅	
Triangularity, δ	~ 0.6	δ_{95}	
Plasma shape	SN	Backup: DN	
Density (<n<sub>e>/n_G)</n<sub>	~ 1.2	n _G ~ 0.82x10 ²⁰ m ⁻³	
Temperature(<t>)</t>	> 13 keV		
Plasma current, I _P	~ 13 MA		
Toroidal field, B ₀	~ 6.5T	High field TF (Nb3Sn)	
β_N	~ 3.5	High beta operation	
Fusion power	1500 MW		
Blanket	HCCP		
Heating/CD	> 60 MW		

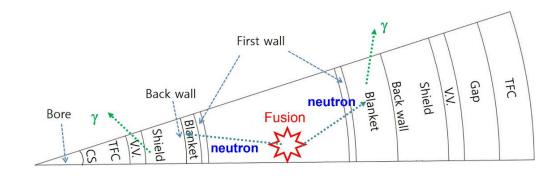
K-DEMO Scoping by Extensive System Analyses



- Ranges of system parameters were scanned with engineering and physics constraints:
 - External power injection: P_{inj} < 100 MW
 - Neutron wall loading: Γ_N < 2.0 MW/m²
 - Divertor FOM: P_{div}/R_0 < 25.0 MW/m
 - TF current density limit: J_{TF} < 2.5×10⁷ A/m²
 - TF coil case stress limit: s_{TFcase} < 560 Mpa
 - Shielding requirements for TF coil
 - dose to the insulators < 1×10⁹ rad
 - displacement damage on Cu < 5×10⁻⁵ dpa
 - fast neutron fluence < 10¹⁸ n/cm²
 - nuclear heating rate < 5×10⁻⁵ W/cm³
- Additional filters were applied to narrow down feasible system designs:

 R_0 < 10.0 m, P_{netel} > 300 MW, Direct cost < 7.5 B\$

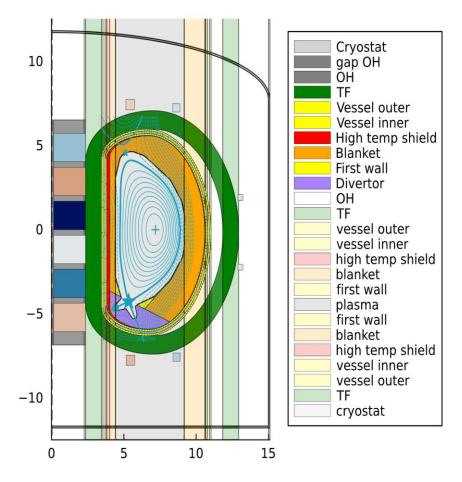
above filters + Q > 20.0, $n_e/n_G < 1.25$, $\beta_N < 3.5$, H < 1.3, and $q_{edae} > 4.0$ above filters + $6.8 \text{ m} < R_0 < 7.0 \text{ m}$, A = 3.1, $6.5 \text{ T} \le B_T$ Design point (\star): $R_0 \sim 6.8 \text{ m}$, $P_{fusion} < 1,600 \text{ MW}$


Scanning of K-DEMO system parameters with the IPB98(y,2) scaling

K-DEMO Reference Design Point with $R_0 = 6.8m \& B_T = 6.5T$

Key System Parameters	
Major radius, R_0 (m)	6.80
Aspect ratio, A	3.1
Magnetic field at plasma center, B_T (T)	6.55
Peak magnetic field, B_{peak} (T)	12.5
Stored energy of plasma (MJ)	750.3
Auxiliary heating, P_{inj} (MW)	73.7
Fusion gain, Q	20.4
Divertor power handling index, P_{sep}/R_0 (MW/m)	20.7
Neutron wall loading Γ_N (MW/m ²)	1.3
Net electric power, P_{netel} (MW)	329
Thermodynamic efficiency, η_{th}	0.39
Wall-plug efficiency of current drive system, η_{CD}	0.38
Thermal fusion power, P_{fusion}	1502
Inboard blanket thickness (m)	0.38
Inboard shield thickness (m)	0.40
TF coil thickness (m)	1.14
CS thickness (m)	0.64
CS bore radius (m)	1.67
Outboard (shield + blanket) thickness (m)	1.2
Direct cost (B\$)	6.76

- System analysis combined with simplified neutronics calculation
 - Assume cylindrical geometry with 1D radial build from system analysis
 - ANISN radiation transport calculation including anisotropic scatterings of neutrons and gamma rays with detailed material compositions (FENDL-3.3 C.X. library)
 - Tritium Breeding Ratio calculation based on Li C.X. ENDF/B-VII.1 library

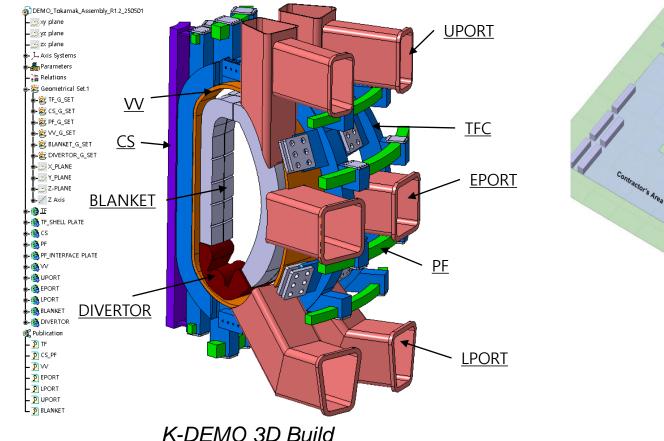

Component	Material (Volume%)	
First wall	FMS (50), He (33), W (17)	
Breeding blanket	Coolant (10), Breeder (80), FMS (10)	
Back wall/Manifold	FMS (40), He (60)	
Shield	FMS (5), WC (85), H ₂ O (10)	
Vacuum vessel	Borated steel (60), H ₂ O (40)	
Toroidal field coil	Nb ₃ Sn, Cu, Epoxy, SUS316, L. He	

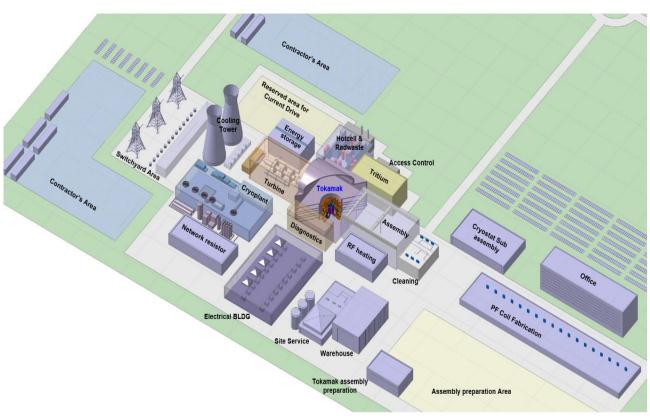
K-DEMO Pre-CDA: 2D Build and Reference Scenario

KFE

- Advanced System Code FUSE (O. Meneghini, GA)
 is being used for scanning and proto-typing of 2D
 Build with self-consistent plasma equilibrium.
- K-DEMO requires plasma scenarios with significantly improved performance compared to standard H-mode → e.g. hybrid or high-li

Key Plasma Parameters	
Elongation, κ	2.0
Plasma current, I_p (MA)	13.6
Electron density, $\langle n_e \rangle$ ($\times 10^{20}$ m ⁻³)	0.82
Electron Temperature, $\langle T_e \rangle$ (keV)	13.5
Bootstrap current fraction, f_{BS}	0.57
Edge safety factor, q_{edge}	5.05
Greenwald density fraction, n_e/n_G	1.07
Normalized beta, β_N	2.97
Confinement enhancement factor, H	1.27



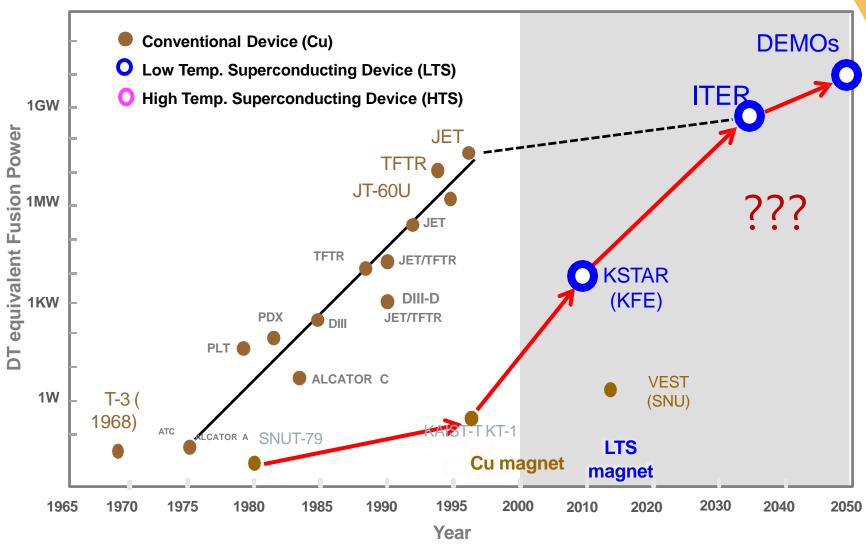

K-DEMO 2D Build generated by FUSE

K-DEMO Pre-CDA: 3D Build and Site Layout

KFE

- Tools and integration platform are prepared with Plant Breakdown Structure (PBS).
- 3D build was constructed with 2D build and consideration for remote maintenance.
- Site layout was made including buildings for main reactor and all necessary components.

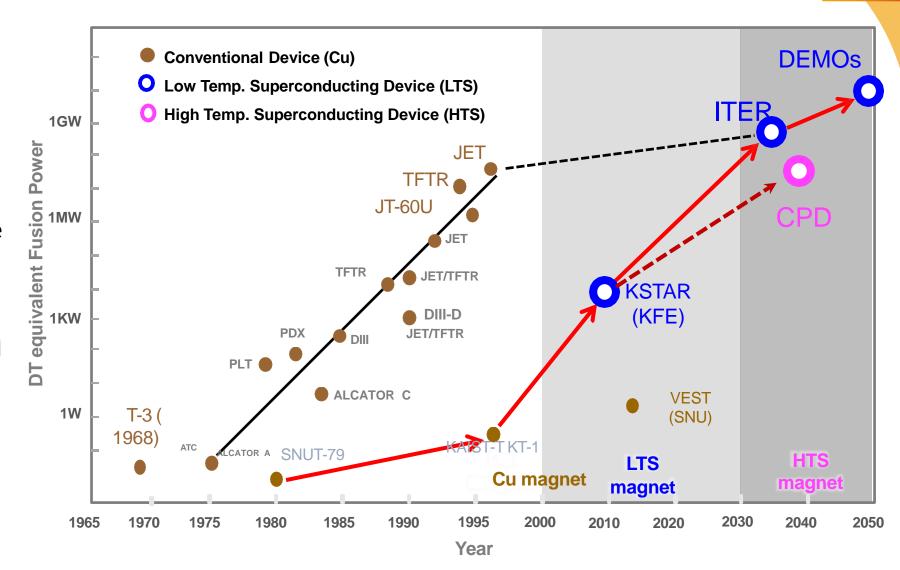
K-DEMO Site Layout

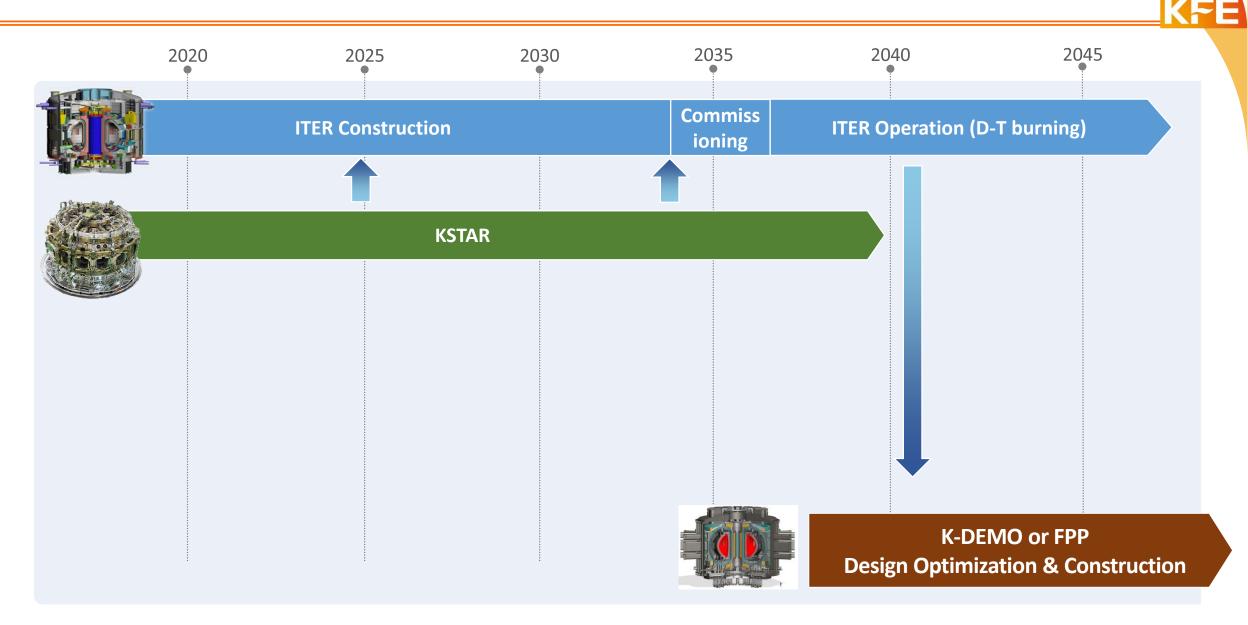


III. Strategy for Innovative Compact Pilot Device (CPD)

Expansion of Korean National Fusion R&D Path

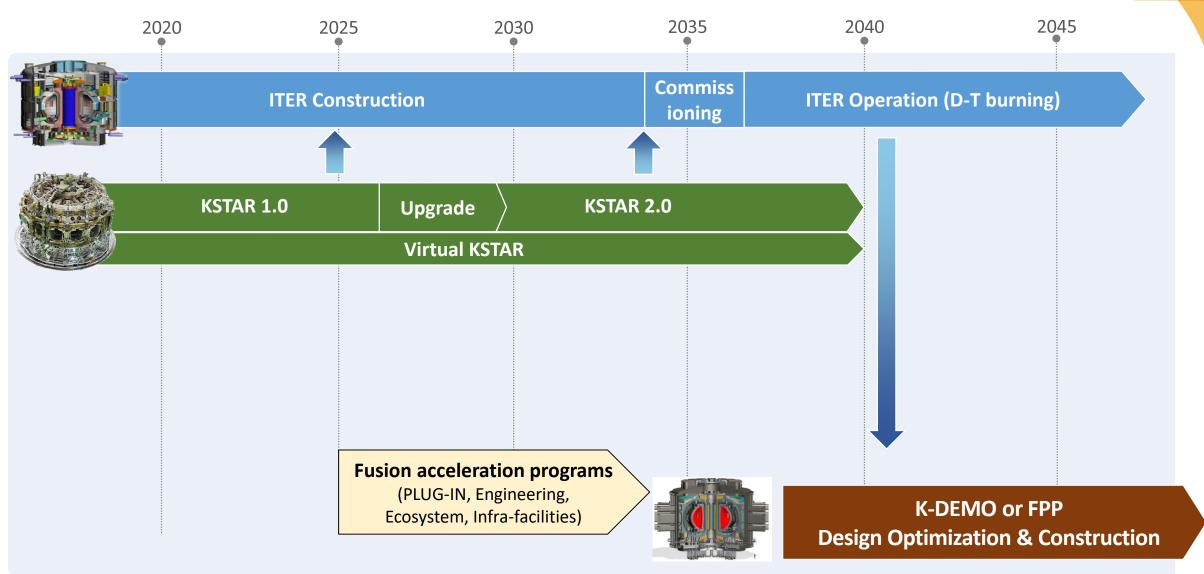
KFE


- There have been growing interests and discussions on newly emerging innovative technologies for fusion.
- Recently, a community-wise consensus was made to embrace these innovative technologies to expand Korean Fusion R&D.

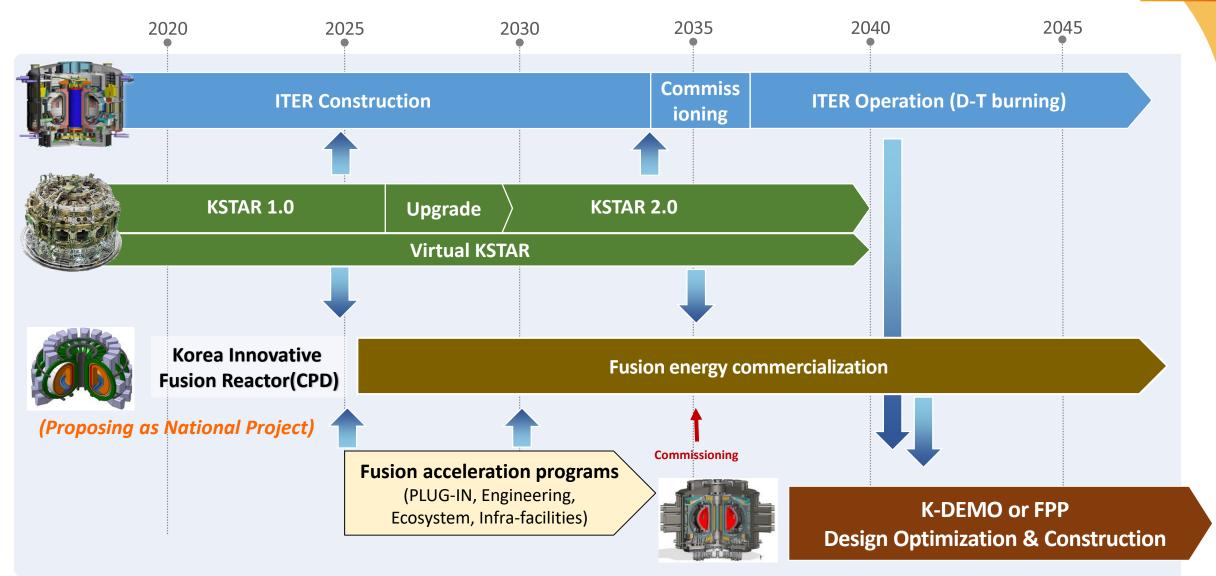

Global Fusion R&D and Korea's mid-entry strategy (1995)

Expansion of Korean National Fusion R&D Path (not approved yet)

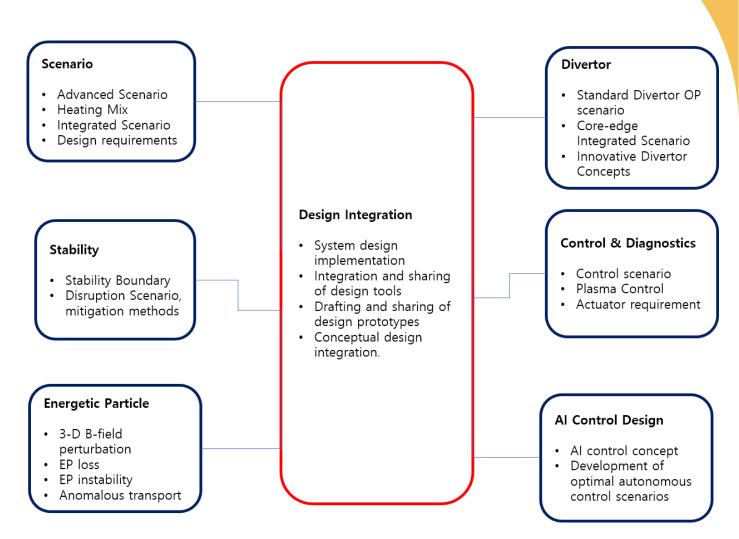
- There have been growing interests and discussions on newly emerging innovative technologies for fusion.
- Recently, a community-wise consensus was made to embrace these innovative technologies to expand Korean Fusion R&D.
- It is proposed to expand national fusion R&D projects including compact pilot device (CPD) employing HTS technology along with the conventional KSTAR→ITER→K-DEMO path (not approved yet).



Proposed timeline of key Fusion programs

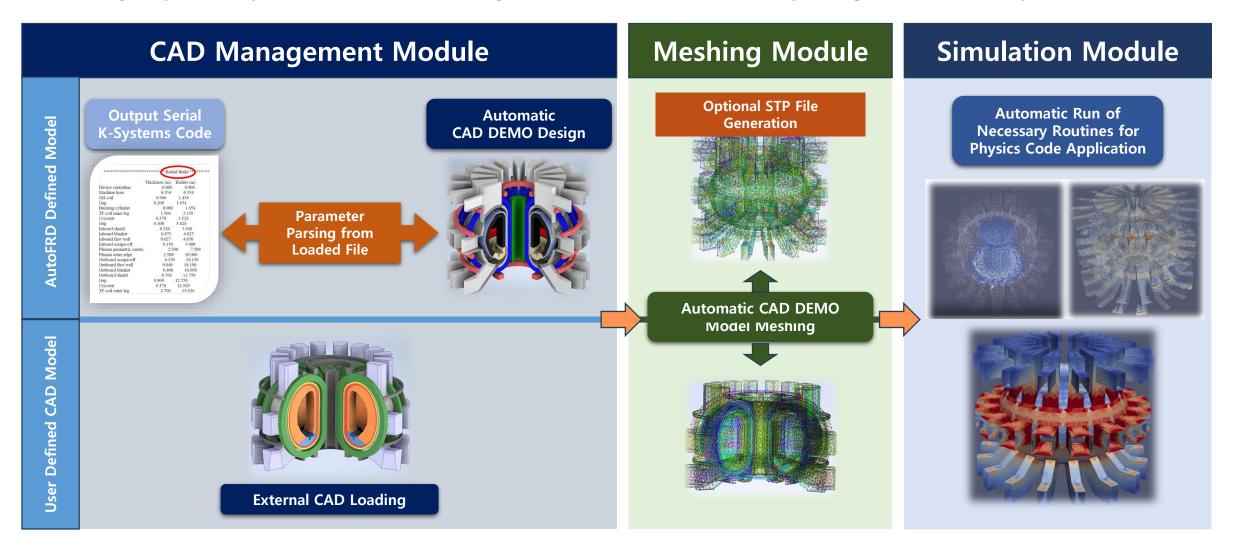

Proposed timeline of key Fusion programs

Proposed timeline of key Fusion programs (being proposed)



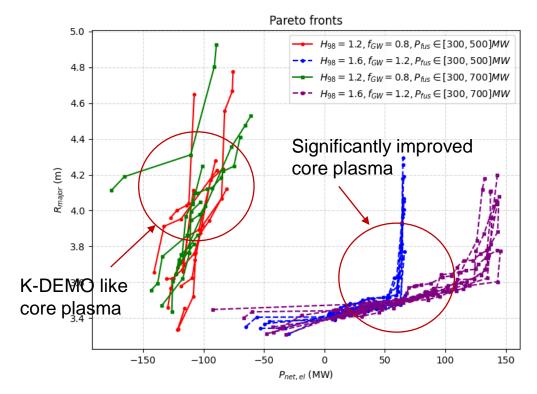
IV. Preliminary Design Study for the CPD

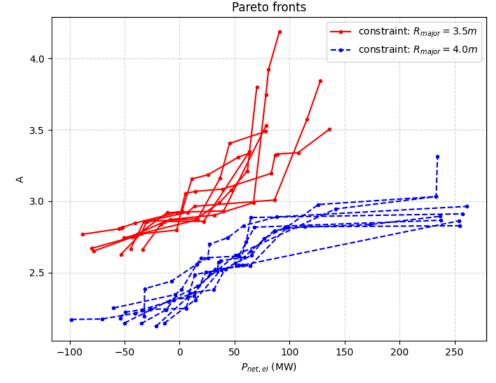
K-DEMO design TF moving toward the design of CPD


- A new sub-design TF is formed to conduct:
 - Development of advanced design tools for rapid proto-typing and design changes
 - System scoping for optimum radial build and physics parameters

Sub-design TF to explore the CPD concept

Development of Advanced Design Tools for CPD

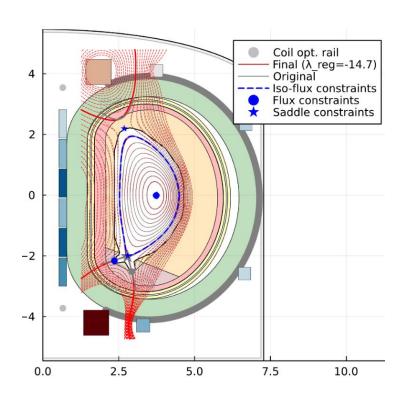

- KFE
- Automated 3D CAD generation and mesh generation for physics simulation and engineering analysis
- Aiming Bayesian optimization based design accelerations for as many design elements as possible

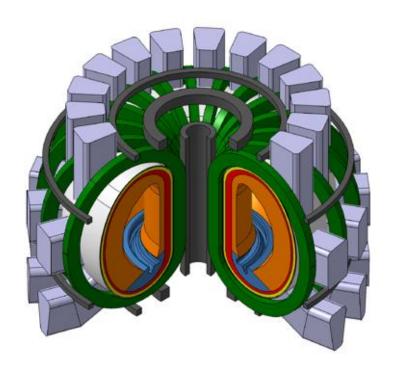

Optimization of System Parameters for CPD

- Multi-objective optimizations of CPD were performed to set major parameters:
 - Net electricity around 60 ~ 150 MWe with major radius in range [3.5m, 4m]
 - Limitations in reducing the aspect ratio due to engineering constraints
- Compared to K-DEMO, significantly improved plasma performance is required to achieve net electricity with $R_0 < 4m$
 - $H_{98} = 1.2 \rightarrow 1.6$, $n_e/n_G = 1.1 \rightarrow 1.2$, $f_{BS} = 0.6 \rightarrow 0.8$ etc.
- Due to the shielding, stress, flux consumption requirements, there are limits in reducing aspect ratio

Optimization of Aspect Ratio for CPD

A CPD Reference with $R_0=3.5m\ \&\ B_T=8.2T$

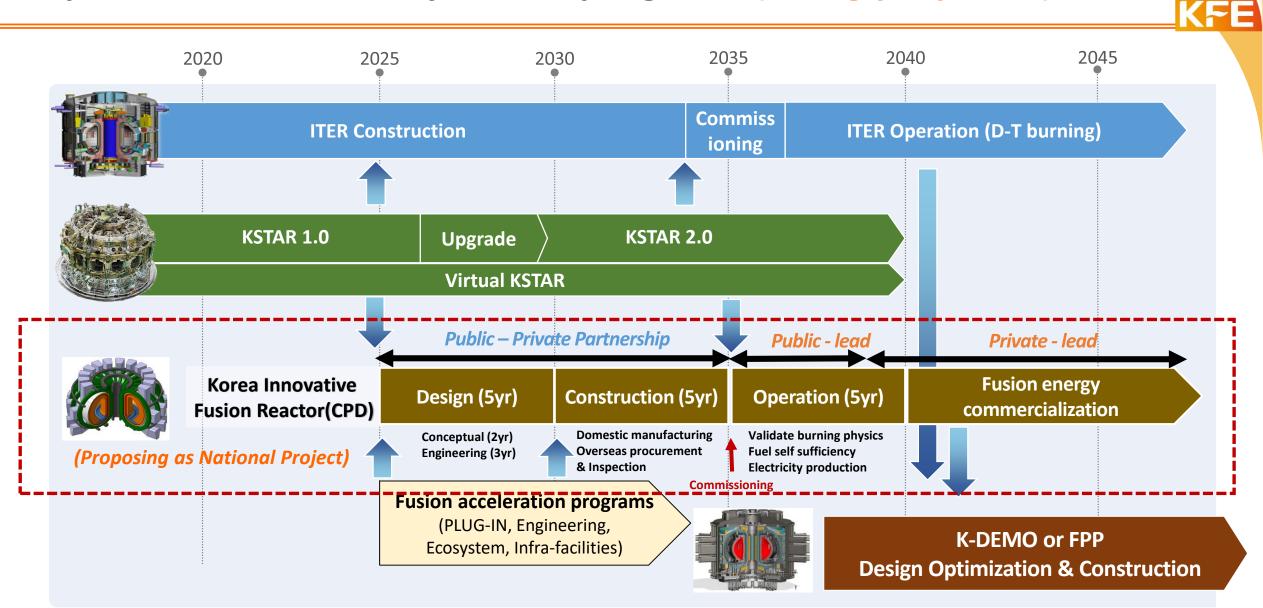

- KFE
- lacktriangle Many similarities with previously proposed small reactor concepts employing HTS, allowing high B_T
- Aim to produce net electricity with power conversion ratios $\,\eta_{th}$, $\eta_{CD} \sim 0.4\,$


		ARC (FED 2015)	GA CTPP (FST 2021)	COMPACT (FED 2023)	CPD with $R_0 = 3.5m$
	CS role, τ_{pulse} (h)	I_p start-up, S-S	I_p ramp-up & burn, $1 \sim 2$	10% flux for I_p ramp-up, S-S	50% flux for I_p ramp-up, S-S
	B_{maxTF}	23 T, REBCO	23T, REBCO	23T, REBCO	23T, REBCO
J_{TF}/J_{CS} (MA/m ²)	44.0	39.1/64.6	40.0/40.0	40.0/60.0	
	$\Delta_{\rm IF}$ / $\Delta_{\rm CS}$ / $\Delta_{\rm plug}$ (m)	0.64/0.25/0.45	0.3/0.3/0.98	0.88/0.13/>0.2	0.69/0.28/0.56
	$\Delta_{\rm SHi}/\Delta_{\rm BLi}$ (m)	0.55/0.31	0.45/0.3	0.5/0.18	0.37/0.30
	Shield	TiH_2 , n fluence: $3x10^{18}$ n/cm ²	WC? n fluence: 1x10 ¹⁹ n/cm ²	WC, n fluence: 1x10 ¹⁸ n/cm ² 40 yrs and 75% availability	W_2B_5 , n fluence: $3x10^{18}$ n/cm ² 30 yrs and 50% availability
	Blanket	FLiBe	HCLL? [Ref. Hong]	HCLL w. 90 % Li-6 (ref.)	HCLL/HCSB w. 90 % Li-6 (ref.)
	Thermal efficiency, η_{th}	0.4	0.4	0.4	0.4
Major Device Parameters	$R_0(\mathbf{m})/A/\kappa$	33/3/1.84	3.72/3/1.84	3.63/3.2/2.0	3.50/3.5 /2.0
	B_T/B_{TF} (T)	92/23	5.9/13.4	83/19.4	8.2/18.3
	$P_{fusion}/P_{CD}/P_{netel}$ (MW)	525/38.6/190	649/33.8/200	664/31.6/102	490/30.0/80
	Direct capital cost (B\$)	~5.6 B\$ (w.o. BOP) from V, m & unit prices	~4.2 B\$ (w. BOP) from Sheffield [2016, 1986]	~4.0 B\$ (w. BOP) from Sheffield [2016, 1986]	~4.2 B\$ (w. BOP) from Sheffield [2016, 1986]

A CPD Reference with $R_0=3.5m\ \&\ B_T=8.2T$

- FUSE was utilized to generate 2D build, which is consistent with the 1D build from the system analysis.
- 3D build was generated by the AutoFRD with 16 TF coils 0.5% ripple without ferritic inserts.
- Scenario development is on-going:
 - Improved scenario based on conventional ones (e.g. hybrid) for pulse operation
 - Advanced Tokamak-like scenario (e.g. high- β_p) for steady state operation, especially with innovative actuators

2D Build by FUSE: REBCO for TF&CD and Nb₃Sn for PF


V. Summary and Future Perspective

Summary

KFE

- The Korea National Fusion R&D is making steady progress:
 - DEMO design TF launched in 2023 aiming Pre-CDA until 2026
 - Government approved the top design requirements of K-DEMO
 - Preliminary 3D build and site layout were produced
- Compact Pilot Device (CPD) is being proposed with growing consensus in Korean Fusion
 Community to embrace innovative technologies for the acceleration of fusion R&D:
 - Developments of AI-based advanced design tools
 - System scoping study to set reference design points and 2D, 3D builds with rapid proto-typing
 - On-going discussion for alignment with other national fusion R&D projects to develop key enabling technologies including innovative actuators

Proposed timeline of key Fusion programs (being proposed)

Many Thanks for Your Attentions!