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Advance in Stellarator Optimisation

Big steps in Stellarator Optimisation with new configurations

MAX PLANCK INSTITUTE FOR PLASMA PHYSICS | FELIX WARMER | 18. OCT 2025 IAEA FEC 2025, CHENGDU, CHINA 2



Reactor Engineering

Attachment flanges
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) P 4
MS weight support

Various technology options & integration
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= Potentially countless Stellarator shape variations
= Different technology options (HTS vs. LTS, blanket materials, etc.)
= High entanglement between components (& plasma) — challenge of integration

Importance of having an (automated) workflow for design assessment
(while working with limited resources)
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Wendelstein

Content AR

« Tools for the Geometry description
« Parametric workflow for neutronic analysis
« Parametric workflow for magnet assessment

e Summary
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Tools for the Geometry Description
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Creating a 3D (equidistant) wall surface / blanket layers

T. Bogaarts, F. Warmer,
NF in prep. (2025)

rs({s, d}v 0, 90)

= Normal vectors have a toroidal component - elements no longer lie on a poloidal cut
= Curvature leads to unequally-spaced elements
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Solution: Fourier Transform of wall & blanket surfaces

= Apply Fourier Transform and re-order poloidal coordinate for a constant poloidal arc length
—> better mesh (also reduces Fourier harmonics)
= Multiple surfaces can be combined resulting in layered blanket
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Fitting “arbitrary” surfaces, i.e. coil surface

» Find ‘distances’ and ‘angles’
from arbitrary points using a
combination of a grid search
and Newton iterations

= Apply Fourier Transform

= Particularly useful for the ‘coil
surface’
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Coil Geometry m Centroid

2 Suﬁdce
Typical input:
= Discrete filaments OR Fourier-based filaments

Several ways to define a coordinate system along a
coil to get finite size coils:

» The Frenet-Serret frame (leads to irregular shapes)
= The centroid frame (vector to its center of mass)

» The rotation-minimized frame (reduces twisting)

» (any user-defined normal’s)

Likely to be custom defined depending on detailed
engineering requirements (e.g. HTS tape orientation)
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Parametric workflow for neutronic analysis
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Neutron Transport & Blanket

Neutrons are a key aspect that separates
experiments from a Fusion Reactor

Desired quantities:

= Tritium breeding
— 1.9e+01

— 17

= Nuclear heating 16 S
15 o

= Neutron damage ER
&

12 o

= Shielding / Safety 0 3
8.0e+00

- Solve neutron transport

~

Q-Vi(r,Q E) +o(r, B)Y(r,Q E) = q(r,Q, F)
~ ~~ - ~~ T N — e’

Streaming Collisions Sources
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Neutron Transport: Traditional MC approach

= Monte Carlo method

= Requires 102 samples

= Poor statistics far from source

* Not suited for complex shapes (CSG format)

- Has been successfully applied to stellarators
in EUROfusion: MCNP5/6, Serpent2, OpenMC

—> But impractical for design exploration

A. Haussler, et al. FED 136 (2018) | Palermo. this IAEA FEC
|. Palermo, et al. NF 61 (2021) - raie ’ ’

T. Lyytinen, et al. NF 64 (2024) Friday, 14:40, TEC/4-3

etc.
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Modelling Innovations: Deterministic Neutronics TU/e Bty
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Finished development
Fully 3D capable

Benchmarked
10° faster than MC

T. Bogaarts, F. Warmer, NF 65 (2025)
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Deterministic Neutronics: 3D solution & optimisation TU/e #5555
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= Neutrons are a key design driver 2 new tool allows fast design iteration and optimisation
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Method Application to a New Configuration TU/e gty

¢ = 0 rad ¢ = /16 rad ¢ = /8 rad
7.5 - -
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—2.5 4 - i
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I I I I I I I I I
¢ = 37 /16 rad ¢ = /4 rad
w5 | B Scrape-off-layer
B First Wall
5.0 4 - Breeding Zone
Back Supporting Structure
e 2.5 7 7 Il Vacuum Vessel Wall Front
N o0 - i Shield
' Bl Vacuum Vessel Wall Back
—2.5 4 - Void
—5.0 1 -
A. Goodman, et al., PRX Energy 3.2 (2024) . T T T . . T. Bogaarts, F. Warmer,
A. Goodman, et al., JPP, in prep. (2025) 15 20 25 15 20 25 NF in prep. (2025)
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Z [m]

Insights from the New Configuration + Coil set

¢ = Orad

¢ =7/16 rad

5.0 A

¢ = 3w /16 rad

I
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T. Bogaarts, F. Warmer, NF in prep. (2025)
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¢ = w/8rad

x 1013
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- 1046
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Fast Neutron Flux [m—2 s~ 1]

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Highly varying coil-plasma
distance

Typical narrow regions on
the inboard side

Shielding needed to be
adjusted to satisfy the fast
flux constraint on the coils
(< 10" m2s")

Conclusion: coils need
iteration, but new method
key for quick assessment
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EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

Insights from the New Configuration + Coil set

= Highly varying coil-plasma
distance

= Typical narrow regions on
the inboard side

= Shielding needed to be
adjusted to satisfy the fast
flux constraint on the coils
(< 10" m2s")

x10%  x 1013
10 -1.0

- 0.5

= Conclusion: coils need

=107 | - 0.8

E iteration, but new method
N key for quick assessment

T. Bogaarts, F. Warmer, NF in prep. (2025)

1013 M 0.0 0.0
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Parametric workflow for magnet assessment
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Towards a realistic & feasible coil set

Coil optimisation:

» Finding optimal shape

» Reproduce configuration

= Some engineering
constraints
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Winding Pack:

» SC choice (HTS vs LTS)
= Cable concept

= Max B-field

= Quench protection

Mechanical Analysis:

= Add support structure
» FEM simulations
= |teration
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1) Bayesian Optimisation of Stellarator Coils

Coil design is a heavily constrained optimisation
problem that needs modern solutions

Automated and intelligent design space exploration:

» Many engineering constraints = many weights

» Typically requires manual adjustment or studies
» Reformulate as a Bayesian optimization problem
» Prototype optimization implemented

1.49¢-17 Dol OV BoyiB 0.0477

-1.19e+05 -5.94e+04 0.00 ~ 5.94e+04

Ongoing improvements:

= more effective initial guesses Quantity

» employ Gaussian processes to model the coils (B -n)/(B) x 1073 29 14

max (B - n)/(B) x 10~2 11 6.4
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2) Winding Pack modelling

* Flexible model that considers engineering
constraints self-consistently:

Superconductor properties (j i Bmaxs 1c)
B-Field inside the coils (Biot-Savart)
Coil quench protection (Cu fraction)
Coil-coil and coil-plasma distance
Lateral and radial forces

Bending radius

* Under development:

superconductor strain limits
structure stress

« explore alternative approaches
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|B||T"

= Coils approximated by cuboids
with constant current density
=  Analytic solution to Biot-Savart
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2) Winding Pack modelling

* Flexible model that considers engineering
constraints self-consistently:
» Superconductor properties (ji, Brax: Tc)
« B-Field inside the coils (Biot-Savart)
» Coil quench protection (Cu fraction)
» Coil-coil and coil-plasma distance
« Lateral and radial forces
* Bending radius

10.0

* Under development:
« superconductor strain limits
 structure stress
« explore alternative approaches

J. Lion, F. Warmer, et al NF 61 (2021)
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3) Mechanical Analysis workflow

Fully bonded or
Frictionless btw.
Case and Coll

v

Lorentz Force Mechanical Analysis:
from EM Coil Cases and
simulation Intercoil structure Boundary Conditions:
< 1. Gravity support: Sliding contact
Smeared 1. Cool-down tq 4.2K 2. Periodic boundary conditions
mechanical [— 2. EM Iqad during
properties operation

T

Intercoil Structure:
Space filled between
coils

D. Biek, et al, IEEE Transactions on Applied
Superconductivity, submitted (2025)
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D. Biek, et al, IEEE Transactions on Applied

Superconductivity, submitted (2025)
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* First prototype workflow (old config.)

» Automate, apply to new configurations

(?)

INNer ring

* Include ports / access /
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Coherent Blanket design for Stellarators
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More detailed engineering activities within EUROfusion

|. Palermo, this IAEA FEC,
Friday, 14:40, TEC/4-3

Laboratorio Nacional
de Fusion

A' Aalto University

ﬁ VTT

Segmentation

MHD tools

Neutronics
tolos for MC

_ RH approaches
FW design i

UK Atomic
Energy
Authority

Thermal-hydraulics +
Thermo-mechanics
Multi-scale approach
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‘Digital Twin’ for Stellarator Design

* innovative modelling # of

= model integration Disciplines
" intrinsic multidisciplinary

MC Neutron
transport

Fidelity of models
‘Flight Simulator’ for Stellarator Operation

" reaCtOr Operation & ContrOI Actuators: fuelling, heating, control coils
= model predictive control ‘
= diagnostic requirements i i AL

Control System : transport solver

(Synthetic) Diagnostics signals
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Summary

= Geometry tools developed for blanket & coil representation (tetrahedral mesh)

= New, fast deterministic neutronics method that works directly on this geometry

= Application to a new promising configuration reveals the importance of coil design
= Consequently, advances are made in automating magnet system design workflow
= New methods for coil optimisation emerging (+ adding engineering constraints)

» First steps towards FEM structural mechanical analysis

= contact: felix.warmer@ipp.mpg.de



mailto:felix.warmer@ipp.mpg.de

Backup slides



Such Models allow unprecedented Design Optimisation

= Allows 3D blanket optimisation

= Potentially increased life-time

= Next step: integrate with coil
optimization

Virtually impossible
with previous methods

J. Lion, F. Warmer, et al NF 62 (2022)
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3) Quench Modelling

I I [ [ I
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Neutron Transport: Traditional MC approach applied to Stellarators

e.g. MCNP6, Serpent2 30 40 50 60 70
Breeding zone thickness [cm]

automatic CAD model 3D nuclear response Parametric Studies
& . "
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Conversion tools /

Full 3D Stellarator geometry
directly on mesh

EUROfusion
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TBR deterministic neutronics
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State-of-the-art: Systems Codes such as “PROCESS”

Simplified, yet comprehensive model
of an entire fusion reactor (0D or 1D!) | » ‘ : ; .

| Intermediate
Loop

§ RM Component Xferé : I- 57 E i
= Holistic framework § - - ’ i b ey i

Turbines & Electricity
Generation

= Modular(?), multidisciplinary Bk

Building

DEMO
Major System Block Diagram

1
1 1
1 1
1 ]
i | :
Control CryoPlant : Vacuum Vessel [l Vacuum Pump
Systems '
: - Heating Injector - Tritium Recovery
Primary Cooling Neutral Beam / ECH FastLoop / Fuelling
! LoopPum|
: g : | P P Magnets Breeder Blanket
1 ]

' ' ' ! 1 ' . Disruption Mitigation
Ll o R [ Wl T M S  Divertor [ st

i
v Tokomak \
!

= Fast for Design Point exploration

Figure 1. Schematic of a DEMO power plant.
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Limits of Systems Codes

Necs NPC4 NPC3 ... Port
NPC1  3600x1500

Poloidal Angle [Degree]

3600x1600

5000x1800 5000%2000

Flg. 4. Stress intensity (MPa) in magnet system and maximally possible port windows (mm); structure not yet optimized.

20 30 40 50 70 NWL
Toroidal Angle [Degree] [MW/m?)
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State-of-the-art: Systems Codes such as “PROCESS”

Stellarator Systems Code

Pre-Processing

Optimisation PROCESS

* Coil filaments * Reduce dimensionality by * Constrained optimization
* Magnetic configuration pre-calculation of effective within a wider design space
parameters

Utility

e.g. B, W/ Biot-Savart

Future work: systems design feedback
(e.g. engineering constraints) * Engineering feasibility

———————————————————— Design =leilile | © Attractiveness
* Impact of new technologies (e.g. HTS)

—
| .
1y, -
| ]
.
[ ]
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State-of-the-art: Systems Codes such as “PROCESS”

3000} Successfully used in the past
§ = » |dentify design space boundaries
o =
S = 2000
§ % = Assess engineering limits
0w o
1000 = Study impact of new technologies

6 7 8 9
Averaged toroidal magnetic field B; [T

o
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ECRH design for new reactor-relevant Stellarator configurations

Experiments today use X2 or 02, but
high field & density requires X1 or O1

Extensive TRAVIS simulations done:

= SQUID: High mirror ratio / saddle-points

= |[njection location (pol./tor.) & angle

= Scenario depends on freq. and density

» Several solutions found for a combination
of O1 (startup) and X1 (overtake)

Complexities identified:

= Sensitive to magnetic geometry
» Heating of trapped electrons
» Relativistic effects

MAX PLANCK INSTITUTE FOR PLASMA PHYSICS | FELIX WARMER | 18. OCT 2025
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Remote Maintenance

1) Vertical Ports o

nly

2) Vertical + Horizontal Ports

3) Enlarged Vertic
4) Sector Splitting

al Ports

(Baseline)

Consideration Approach 1 |Approach 2 |Approach 3 |Approach 4
Blanket handling 0 +1 +1 +2
Divertor handling 0 -1 0 +1*
Failure scenarios 0 +1 +1 +1
Inspectability 0 +1 +1 +1%*
Hardware costs 0 0 0 -2
Radiation & CC 0 -1 -1 -1
RM Durations 0 0 0 0
Wider plant implications 0 -1 -1 -2

Total: 0 0 +1 0

MAX PLANCK INSTITUTE FOR PLASMA PHYSICS | FELIX WARMER | 18. OCT 2025

+2 Much better than
+1 Better than

0 Same as baseline
-1 Worse than

-2 Much worse than
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Divertor Development: a) Automatic Target Optimisation

INITIAL GEOMETRY

EDGE PHYSICS SOLVER = T UPDATE GEOMETRY
}?k+1=}?k — G‘.’kaﬁ F Y
q (247
A 4
GEOMETRIC SENSITIVITY LINE SEARCH
1L
d. = ﬂ
) ¢
[ OPTIMIZED GEOMETRY NO > SEARCH DIRECTION

see Poster Nr. 28 by,
Reeve K. Duligal
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Divertor Development: b) Closed Divertor

Open (W7-X now)

T T T
5.4 5.6 5.8 6.0
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6.2

Closed (LHD/Tokamaks)

5.4 5.6 5.I8 G.ICI 6.2
R[m]

see also presentation N. Maaziz

IAEA FEC 2025, CHENGDU, CHINA
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Limits of Systems Codes

= Naturally evolved over years: old code, no standardised interfaces
= not as modular as required, difficult to make changes
= Mostly OD or 1D models

= Addressing 3D features important

» Stellarator version is diverging from main PROCESS

- Develop new stellarator design platform: a Digital Twin
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New Project: an integrated 3D design platform

A virtual stellarator reactor

= Configuration flexibility

= 3D engineering models

= Enables fast design iteration

=  Allows data-driven decisions

= Link to stellarator optimization

But: What do we actually need to model?
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Structured System / Functional Decomposition

Level O

Fuse DT nuclei

Level 1

Produce Power

1l

" Fusion
“._powerplant /

™,

Confine plasma Heat plasma Fuel plasma

" Plasma

Level 2

.I
control

VARN

Diagnose plasma

Actuate plasma

h 4 Y

/" Heating A Fuelling
system

| DiagnosticsK (
\\ y, _ system

\_

AN —

(" Vacuum

Contain destructive
loads

Manage impurity

Confine fuel "
concentration

l

Shield neutrons

\_ vessel

]

/‘. \
| Bioshield )

( Divertor | s
\ / | Firstwall )

Preliminary
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Breed tritium
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