

PEELING LIMITED PEDESTALS IN JET-ILW, MAST-U AND TCV: EFFECT OF DENSITY AND ISOTOPE MASS IN DEUTERIUM AND TRITIUM-RICH PLASMA ON PEDESTAL STRUCTURE AND STABILITY AND VALIDATION OF PEDESTAL PREDICTIONS FOR ITER.

L. Frassinetti

KTH Royal Institute of Technology

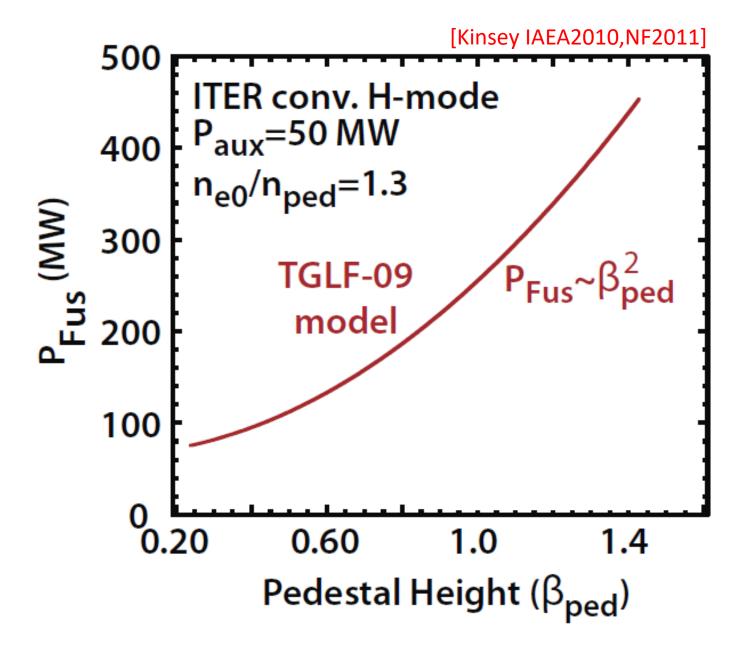
CO-AUTHORS

D. King², S. Saarelma², B. Labit³, S. Blackmore², D. Keeling², C. Perez von Thun⁴, C. Giroud², S. Wiesen⁵, A. Kappatou⁶, N. Vianello⁷, E. Alessi⁸, M. Brix², I.S. Carvalho⁹, P. Carvalho², A. Chomiczewska⁴, J. S. Elmore², M. Fontdecaba¹⁰, E. Giovannozzi¹¹, J. Harrison², S, Hendersson², D. Kos², E. Kowalska⁴, K. Imada¹², M. Lennholm², M. Maslov², A. Meigs², S. Menmuir², R. B. Morales², H. Nyström¹, E. Pawelec¹³, G. Pucella¹¹, R. Scannell², D. Silvagni⁶, A. Stagni⁷, P. Ryan², H.J. Sun², JET Contributors¹⁴, EUROfusion Tokamak Exploitation Team¹⁵, EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK, the MAST Upgrade Team¹⁶, the TCV Team¹⁷.

¹Division of Electromagnetic Engineering and Fusion Science, KTH Royal Institute of Technology, Stockholm SE, ²UKAEA (United Kingdom Atomic Energy Authority), Culham Campus, Abingdon, Oxfordshire, OX14 3DB, UK, ³Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland, ⁴Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw, Poland. ⁵DIFFER - Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven, The Netherlands, ⁶Max-Planck-Institut für Plasma Physik, Boltzmannstr.2, 85748 Garching, Germany, ⁷Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy, ⁸Institute for Plasma Science and Technology, CNR, 20125 Milano, Italy, ⁹ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France, ¹⁰Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain, ¹¹Fusion and Nuclear Safety Department - ENEA C. R. Frascati - Frascati (Roma), Italy, 12 York Plasma Institute, Department of Physics, University of York, YO10 5DD, United Kingdom ¹³Institute of Physics, University of Opole, Poland, ¹⁴See the author list of CF. Maggi et al., Nucl. Fusion 2024, 10.1088/1741-4326/ad3e16, ¹⁵see the author list of E. Joffrin Nuclear Fusion 2024 10.1088/1741-4326/ad2be4 ¹⁶ see author list of J.R. Harrison et al 2019 Nucl. Fusion **59** 112011. ¹⁷See author list of H. Reimerdes et al 2022 Nucl. Fusion 62 042018

D. King², S. Saarelma², B. Labit³, S. Blackmore², D. Keeling², C. Perez von Thun⁴, C. Giroud², S. Wiesen⁵, A. Kappatou⁶, N. Vianello⁷, E. Alessi⁸, M. Brix², I.S. Carvalho⁹, P. Carvalho², A. Chomiczewska⁴, J. S. Elmore², M. Fontdecaba¹⁰, E. Giovannozzi¹¹, J. Harrison², S, Hendersson², D. Kos², E. Kowalska⁴, K. Imada¹², M. Lennholm², M. Maslov², A. Meigs², S. Menmuir², R. B. Morales², H. Nyström¹, E. Pawelec¹³, G. Pucella¹¹, R. Scannell², D. Silvagni⁶, A. Stagni⁷, P. Ryan², H.J. Sun², JET Contributors¹⁴, EUROfusion Tokamak Exploitation Team¹⁵, EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK, the MAST Upgrade Team¹⁶, the TCV Team¹⁷.

¹Division of Electromagnetic Engineering and Fusion Science, KTH Royal Institute of Technology, Stockholm SE, ²UKAEA (United Kingdom Atomic Energy Authority), Culham Campus, Abingdon, Oxfordshire, OX14 3DB, UK, ³Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland, ⁴Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw, Poland. ⁵DIFFER - Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven, The Netherlands, ⁶Max-Planck-Institut für Plasma Physik, Boltzmannstr.2, 85748 Garching, Germany, ⁷Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy, ⁸Institute for Plasma Science and Technology, CNR, 20125 Milano, Italy, ⁹ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France, ¹⁰Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain, ¹¹Fusion and Nuclear Safety Department - ENEA C. R. Frascati - Frascati (Roma), Italy, 12 York Plasma Institute, Department of Physics, University of York, YO10 5DD, United Kingdom ¹³Institute of Physics, University of Opole, Poland, ¹⁴See the author list of CF. Maggi et al., Nucl. Fusion 2024, 10.1088/1741-4326/ad3e16, ¹⁵see the author list of E. Joffrin Nuclear Fusion 2024 10.1088/1741-4326/ad2be4 ¹⁶ see author list of J.R. Harrison et al 2019 Nucl. Fusion **59** 112011. ¹⁷See author list of H. Reimerdes et al 2022 Nucl. Fusion 62 042018

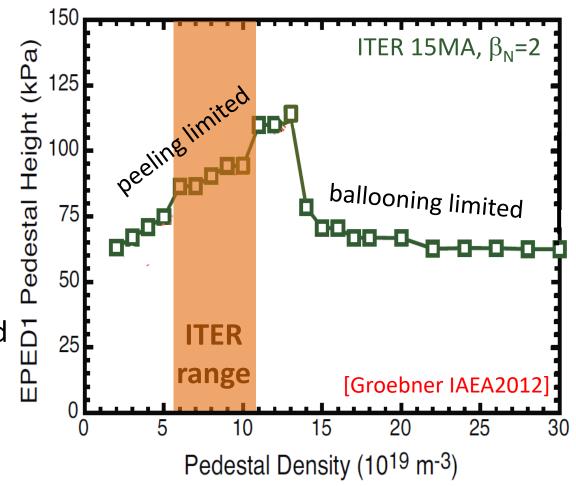


MOTIVATION

- The pedestal plays a major role for ITER:
 - o fusion power will scale as

$$P_{fus} \sim (p^{ped})^2$$

 Assessing and predicting the pedestal behavior in ITERrelevant conditions is essential


- ITER will operate:
 - \circ relatively high n^{ped} [Garzotti NF2019]
 - o high n^{sep}/n^{ped} [Garzotti NF2019]
 - o in mixed deuterium/tritium plasmas
 - o with a metal wall

- ITER will operate:
 - \circ relatively high n^{ped} [Garzotti NF2019]
 - o high n^{sep}/n^{ped} [Garzotti NF2019]
 - o in mixed deuterium/tritium plasmas
 - o with a metal wall
- Earlier modelling suggests that ITER will be limited by peeling instabilities [Snyder NF2011]

- ITER will operate:
 - \circ relatively high n^{ped} [Garzotti NF2019]
 - o high n^{sep}/n^{ped} [Garzotti NF2019]
 - o in mixed deuterium/tritium plasmas
 - o with a metal wall
- Earlier modelling suggests that ITER will be limited by peeling instabilities [Snyder NF2011]

- ITER will operate:
 - \circ relatively high n^{ped} [Garzotti NF2019] $angle \Rightarrow$ mainly from DIII-D in peeling limited pedestals
 - o high n^{sep}/n^{ped} [Garzotti NF2019]
 - o in mixed deuterium/tritium plasmas
 - o with a metal wall
- Earlier modelling suggests that ITER will be limited by peeling instabilities [Snyder NF2011]

- ITER will operate:
 - \circ relatively high n^{ped} [Garzotti NF2019] $\}$
 - o high n^{sep}/n^{ped} [Garzotti NF2019]
 - o in mixed deuterium/tritium plasmas
 - with a metal wall
- Earlier modelling suggests that ITER will be limited by peeling instabilities [Snyder NF2011]

⇒ mainly from DIII-D in peeling limited pedestals

⇒ no experimental results in peeling limited pedestals

- ITER will operate:
 - \circ relatively high n^{ped} [Garzotti NF2019] brace
 - o high n^{sep}/n^{ped} [Garzotti NF2019]
 - o in mixed deuterium/tritium plasmas
 - with a metal wall
- Earlier modelling suggests that ITER will be limited by peeling instabilities
- More recent modelling [Luda NF2025] suggests that ITER will be limited by ballooning modes

⇒ mainly from DIII-D in peeling limited pedestals

 \Rightarrow no experimental results in peeling limited pedestals

- ITER will operate:
 - \circ relatively high n^{ped} [Garzotti NF2019] $\}$
- ⇒ mainly from DIII-D in peeling limited pedestals

- \circ high n^{sep}/n^{ped}
- [Garzotti NF2019]
- o in mixed deuterium/tritium plasmas
- with a metal wall

- ⇒ no experimental results in peeling limited pedestals
- Earlier modelling suggests that ITER will be limited by peeling instabilities
- More recent modelling [Luda NF2025] suggests that ITER will be limited by ballooning modes
- Goals:
 - → reach peeling limited plasmas
 - → assess the role of density, isotope and wall material in the peeling limited pedestals
 - \rightarrow validate the Europed pedestal predictions at ITER relevant v_{ee}^{*ped} , ρ_i^{*ped} , n^{sep}/n^{ped}
 - → understand if ITER will be limited by peeling or ballooning instabilities

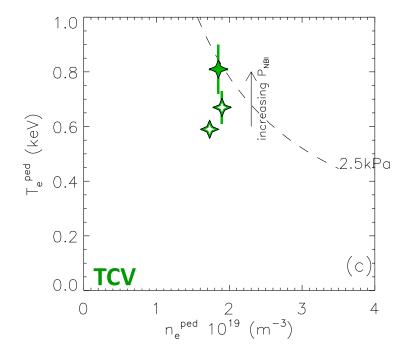
- 1. Reaching peeling limited pedestals in JET-ILW, MAST-U and TCV
- 2. The datasets
- 3. Effect in peeling limited pedestals of

 - $= n_e^{sep}/n_e^{ped}$ on p_e^{ped} in JET-ILW, MAST-U and TCV
 - the isotope mass in peeling limited pedestals in JET-ILW plus corresponding pedestal predictions validation
- 4. Pedestal predictions in ITER
 - will ITER be limited by peeling or ballooning instabilites?
 - Is a transition from peeling to ballooning limited pedestals a problem?
 Type I ELMs are assumed → the predictions are an upper bound of ITER pedestals.

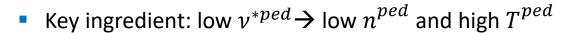
1. Reaching peeling limited pedestals in JET-ILW, MAST-U and TCV

- 2. The datasets
- 3. Effect in peeling limited pedestals of

 - $= n_e^{sep}/n_e^{ped}$ on p_e^{ped} in JET-ILW, MAST-U and TCV
 - the isotope mass in peeling limited pedestals in JET-ILW plus corresponding pedestal predictions validation
- 4. Pedestal predictions in ITER
 - will ITER be limited by peeling or ballooning instabilites?
 - Is a transition from peeling to ballooning limited pedestals a problem?



• Key ingredient: low $v^{*ped} \rightarrow \text{low } n^{ped}$ and high T^{ped}

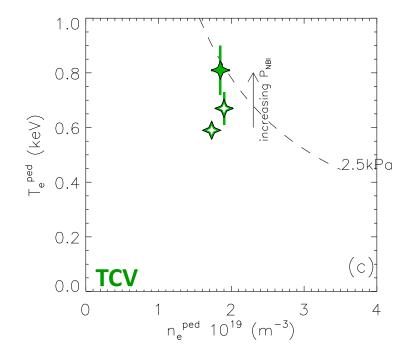

• Key ingredient: low $v^{*ped} \rightarrow \text{low } n^{ped}$ and high T^{ped}

- \circ high- δ (ITER relevant)
- o 155kA/1.4T
- \circ Increase power for high T^{ped}

JET-ILW: MAST-U:

o Increase q_{95} via B_t increase

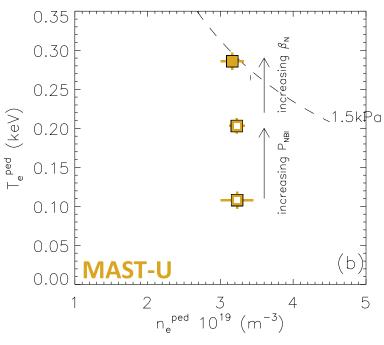
- o high- δ (ITER relevant)
- o 155kA/1.4T
- \circ Increase power for high T^{ped}

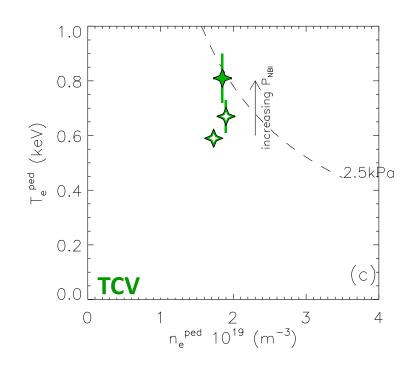


• Key ingredient: low $v^{*ped} \rightarrow \text{low } n^{ped}$ and high T^{ped}

JET-ILW: MAST-U:

TCV:


- \circ high- δ (ITER relevant)
- o 155kA/1.4T
 - Increase power for high T^{ped}


Extra ingredient:

 \circ Increase q_{95} via B_t increase

Optimized elongation [Imada NF2024]

 \circ high- δ (ITER relevant)

Increase power for high T^{ped}

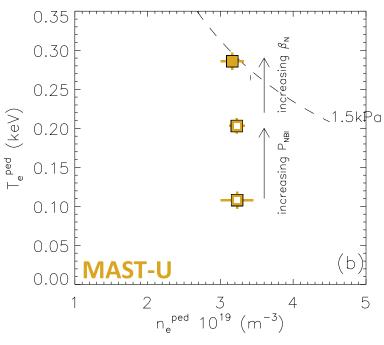
155kA/1.4T

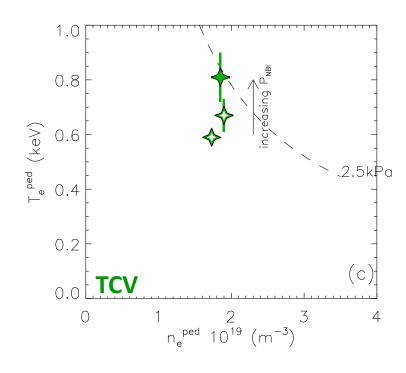
TCV:

• Key ingredient: low $v^{*ped} \rightarrow$ low n^{ped} and high T^{ped}

JET-ILW:

MAST-U:


- \circ high- δ (ITER relevant)
- 750kA/0.5T
- \circ Increase power for high T^{ped}
- Optimized elongation [Imada NF2024]


Extra ingredient:

• Increase q_{95} via B_t increase

• Key ingredient: low $v^{*ped} \rightarrow$ low n^{ped} and high T^{ped}

JET-ILW:

MAST-U:

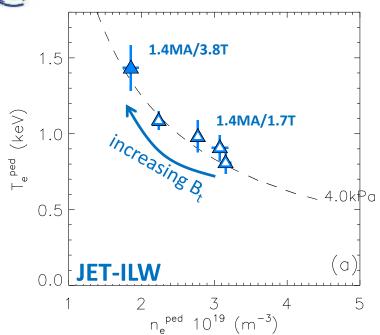
- high- δ (ITER relevant)
- 750kA/0.5T
- \circ Increase power for high T^{ped}

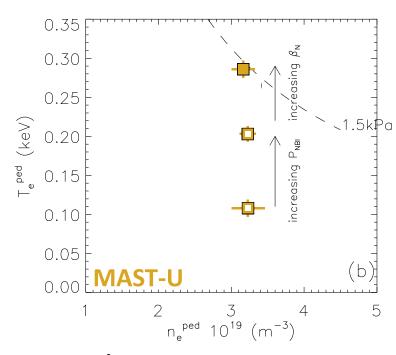
o Inc

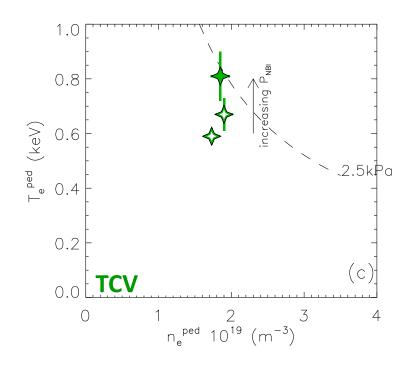
TCV:

 \supset Increase power for high T^{ped}

 \circ high- δ (ITER relevant)


155kA/1.4T

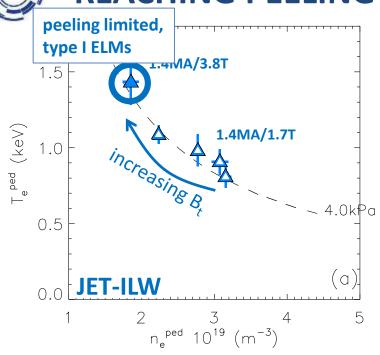

Extra ingredient:

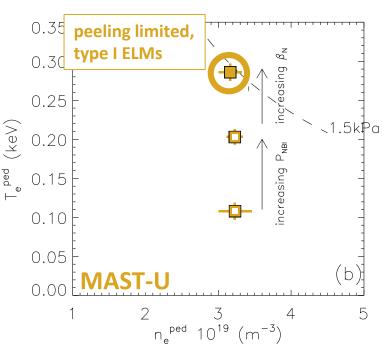

 \circ Increase q_{95} via B_t increase

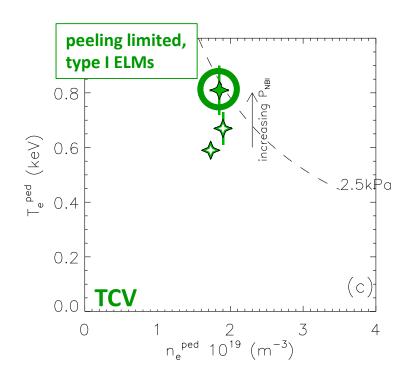
Optimized elongation [Imada NF2024]

Key ingredient: low $v^{*ped} \rightarrow$ low n^{ped} and high T^{ped}

JET-ILW:


- high- δ (ITER relevant)
- 1.4MA / 1.7T→3.8T
- $P_{tot} = 25MW$ (max possible power in this scenario)
- Extra ingredient:
 - \circ Increase q_{95} via B_t increase


MAST-U:


- high- δ (ITER relevant)
- 750kA/0.5T
- \circ Increase power for high T^{ped}
- Optimized elongation [Imada NF2024]

- \circ high- δ (ITER relevant)
- 155kA/1.4T
- $_{\odot}$ Increase power for high T^{ped}

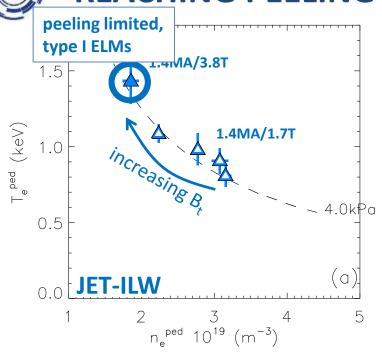
• Key ingredient: low $v^{*ped} \rightarrow$ low n^{ped} and high T^{ped}

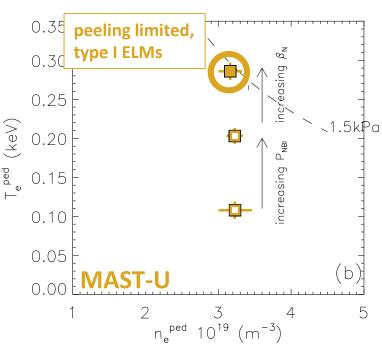
JET-ILW:

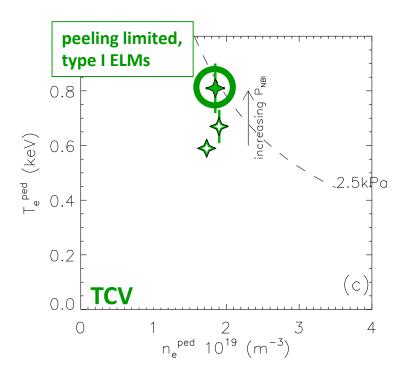
- high- δ (ITER relevant)
- \circ 1.4MA / 1.7T→3.8T
- \circ $P_{tot}=25MW$ (max possible power in this scenario)

Extra ingredient:

 \circ Increase q_{95} via B_t increase


MAST-U:


- high- δ (ITER relevant)
- 750kA/0.5T
- \circ Increase power for high T^{ped}


Optimized elongation [Imada NF2024]

- \circ high- δ (ITER relevant)
- 155kA/1.4T
- $_{\odot}$ Increase power for high T^{ped}

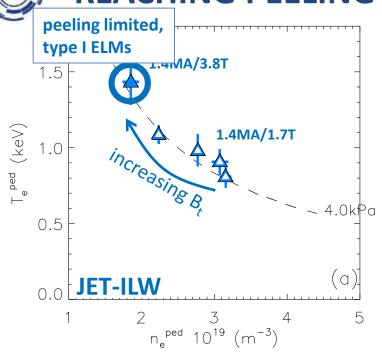
Key ingredient: low $v^{*ped} \rightarrow \text{low } n^{ped}$ and high T^{ped}

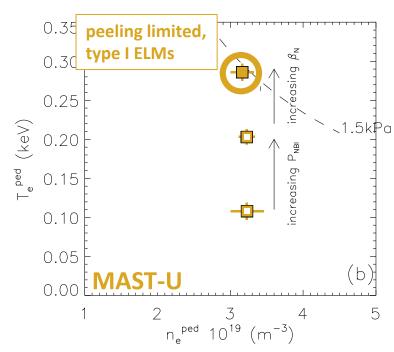
JET-ILW:

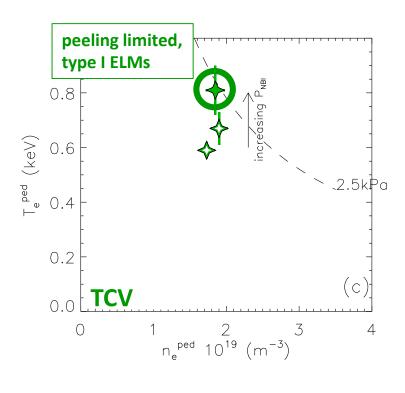
- **high-** δ (ITER relevant)
- \circ 1.4MA / 1.7T→3.8T
- \circ $P_{tot}=25MW$ (max possible power in this scenario)

Extra ingredient:

 \circ Increase q_{95} via B_t increase


MAST-U:


- **high-** δ (ITER relevant)
- 750kA/0.5T
- \circ Increase power for high T^{ped}

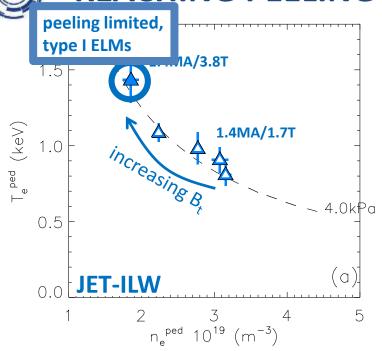

Optimized elongation [Imada NF2024]

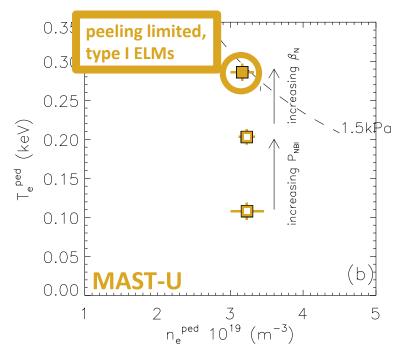
- \circ **high-** δ (ITER relevant)
- 155kA/1.4T
- Increase power for high T^{ped}

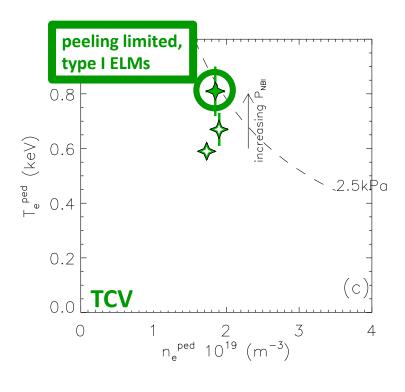
• Key ingredient: low $v^{*ped} \rightarrow$ low n^{ped} and high T^{ped}

JET-ILW:

- o **high-** δ (ITER relevant)
- 1.4MA / 1.7T \rightarrow 3.8T ($q_{95} = 8.5$)
- \circ $P_{tot}=25MW$ (max possible power in this scenario)
- Extra ingredient:
 - \circ Increase q_{95} via B_t increase


MAST-U:


- **high-** δ (ITER relevant)
- \circ 750kA/0.5T ($q_{95} = 6.5$)
- \circ Increase power for high T^{ped}


Optimized elongation [Imada NF2024]

- \circ **high-** δ (ITER relevant)
- \circ 155kA/1.4T ($q_{95} = 5.0$)
- \supset Increase power for high T^{ped}

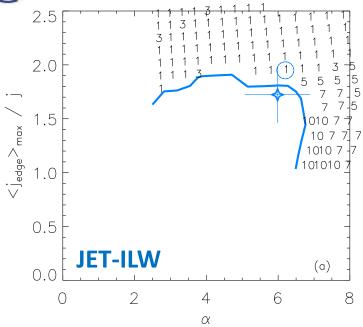
• Key ingredient: low $v^{*ped} \rightarrow$ low n^{ped} and high T^{ped}

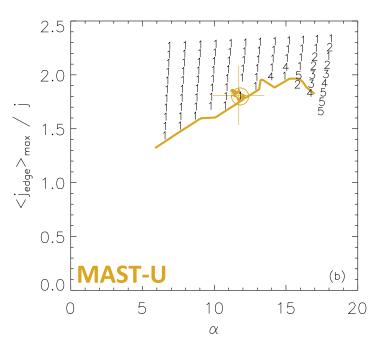
JET-ILW:

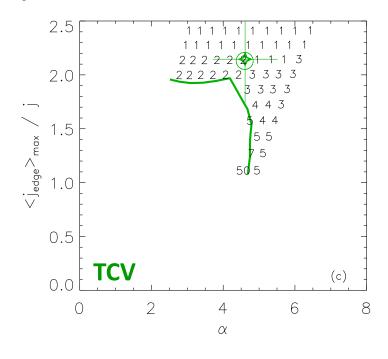
- o **high-** δ (ITER relevant)
- 1.4MA / 1.7T \rightarrow 3.8T ($q_{95} = 8.5$)
- \circ $P_{tot}=25MW$ (max possible power in this scenario)
- Extra ingredient:
 - \circ Increase q_{95} via B_t increase

MAST-U:

- **high-** δ (ITER relevant)
- \circ 750kA/0.5T ($q_{95} = 6.5$)
- \circ Increase power for high T^{ped}


Optimized elongation [Imada NF2024]


- \circ **high-** δ (ITER relevant)
- \circ 155kA/1.4T ($q_{95} = 5.0$)
- \supset Increase power for high T^{ped}

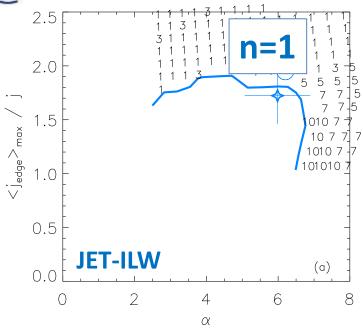


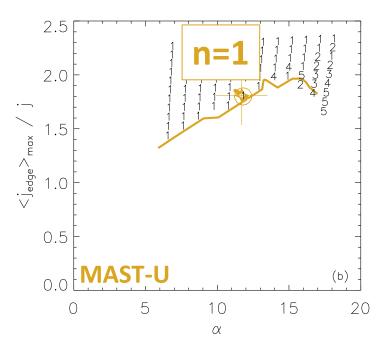
PEELING LIMITED PEDESTALS REACHED IN JET-ILW, MAST-U AND TCV

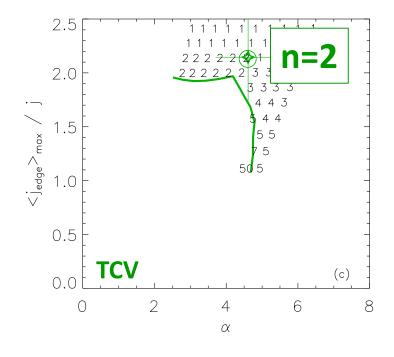
JET-ILW:

- o Pedestal:
 - near the peeling boundary
 - ➤ limited by low-*n* modes

MAST-U:

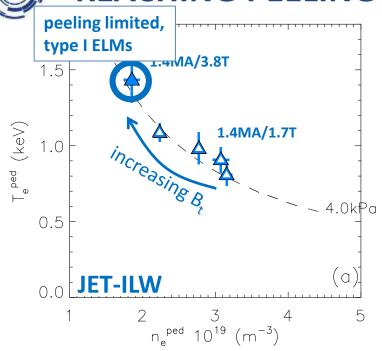

- Pedestal:
 - > at the peeling boundary
 - ➤ limited by low-*n* modes

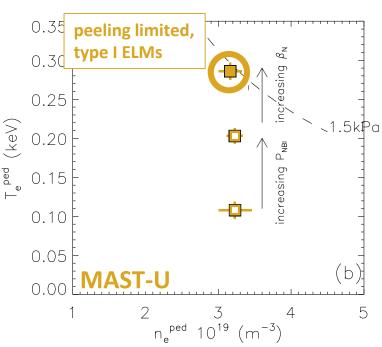

- Pedestal:
 - at the corner
 - \triangleright limited by low-n modes

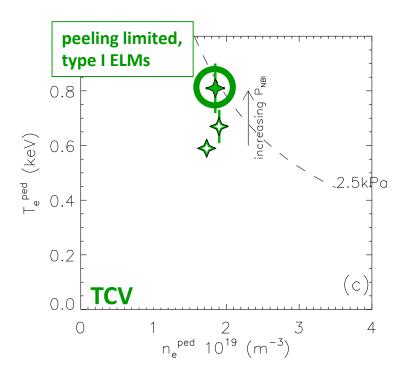


PEELING LIMITED PEDESTALS REACHED IN JET-ILW, MAST-U AND TCV

JET-ILW:


- o Pedestal:
 - > near the peeling boundary
 - ➤ limited by low-*n* modes


MAST-U:


- Pedestal:
 - > at the peeling boundary
 - \triangleright limited by low-n modes

- > Pedestal:
 - at the corner
 - \triangleright limited by low-n modes

• Key ingredient: low $v^{*ped} \rightarrow$ low n^{ped} and high T^{ped}

JET-ILW:

- o **high-** δ (ITER relevant)
- \circ 1.4MA / 1.7T→3.8T
- $\circ~P_{tot}=25MW$ (max possible power in this scenario)

nario)

MAST-U:

 \circ Increase power for high T^{ped}

• high- δ (ITER relevant)

750kA/0.5T

Optimized elongation [Imada NF2024]

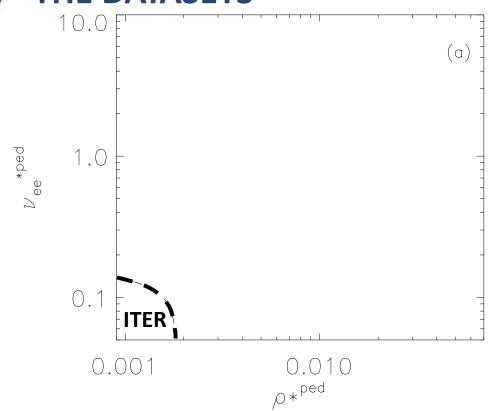
TCV:

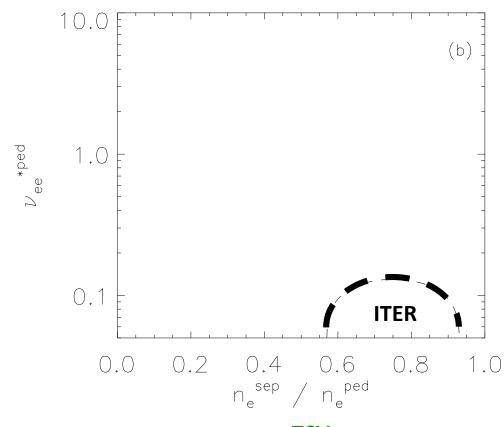
- \circ high- δ (ITER relevant)
- 155kA/1.4T
- \sim Increase power for high T^{ped}

Extra ingredient:

 \circ Increase q_{95} via B_t increase

1. Reaching peeling limited pedestals in JET-ILW, MAST-U and TCV


2. The datasets

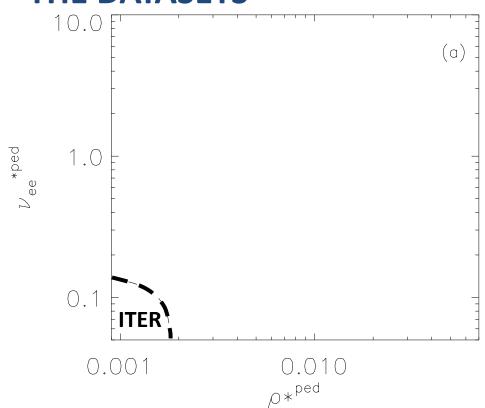

- 3. Effect of

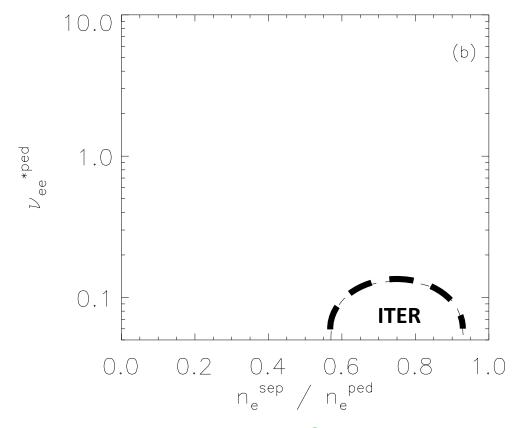
 - $= n_e^{sep}/n_e^{ped}$ on p_e^{ped} in peeling limited pedestals in JET-ILW, MAST-U and TCV
 - the isotope mass in peeling limited pedestals in JET-ILW
 - and corresponding pedestal predictions with Europed
- 4. Pedestal predictions in ITER
 - will ITER be limited by peeling or ballooning instabilites?
 - Is a transition from peeling to ballooning limited pedestals a problem?

THE DATASETS

JET-ILW:

- \circ $\langle \delta \rangle = 0.4$
- \circ 1.4MA/3.8T, $q_{95} = 8.5$
- $P_{NBI} = 25MW$


MAST-U:

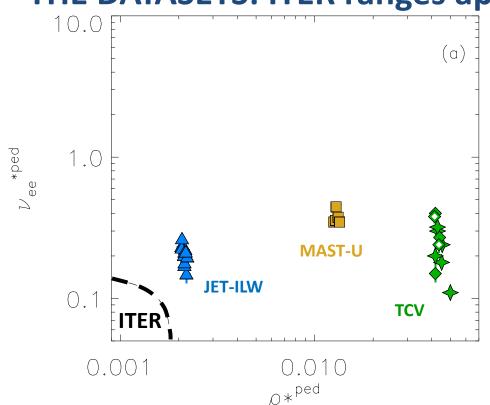

- \circ $\langle \delta \rangle = 0.5$
- \circ 750kA/0.5T, $q_{95} = 6.7$
- $P_{NBI} = 3.2MW$

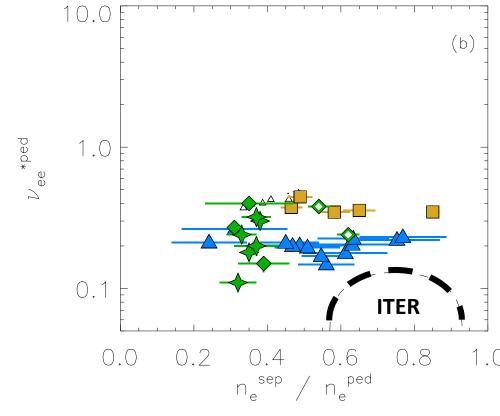
- \circ $\langle \delta \rangle = 0.5$
- \circ 155kA/1.4T , $q_{95}=5.0$
- $P_{NBI} + P_{ECRH} = 1.0 + 1.1 MW$

THE DATASETS

JET-ILW:

- \circ $\langle \delta \rangle = 0.4$
- \circ 1.4MA/3.8T, $q_{95} = 8.5$
- $P_{NBI} = 25MW$
- Gas scan


MAST-U:


- \circ $\langle \delta \rangle = 0.5$
- \circ 750kA/0.5T, $q_{95} = 6.7$
- $P_{NBI} = 3.2MW$
- Gas scan

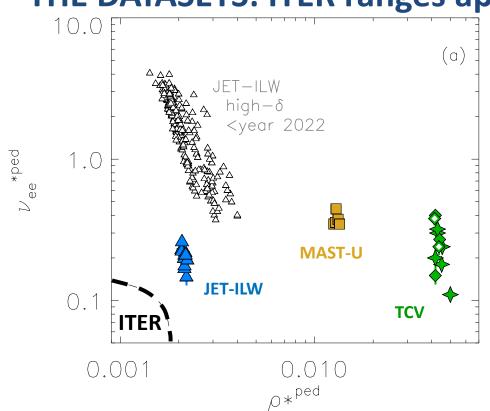
- ⟨δ⟩=0.5
- \circ 155kA/1.4T , $q_{95}=5.0$
- $P_{NBI} + P_{ECRH} = 1.0 + 1.1 MW$
- Gas scan

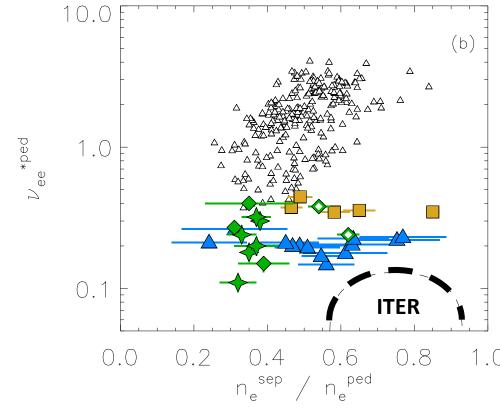
THE DATASETS: ITER ranges approached for JET-ILW

JET-ILW:

- \circ $\langle \delta \rangle = 0.4$
- \circ 1.4MA/3.8T, $q_{95} = 8.5$
- $P_{NBI} = 25MW$
- Gas scan

ightarrow approached ITER v_{ee}^{*ped} , ho_i^{*ped} , n^{sep}/n^{ped}


MAST-U:


- \circ $\langle \delta \rangle = 0.5$
- \circ 750kA/0.5T, $q_{95} = 6.7$
- $P_{NBI} = 3.2MW$
- Gas scan

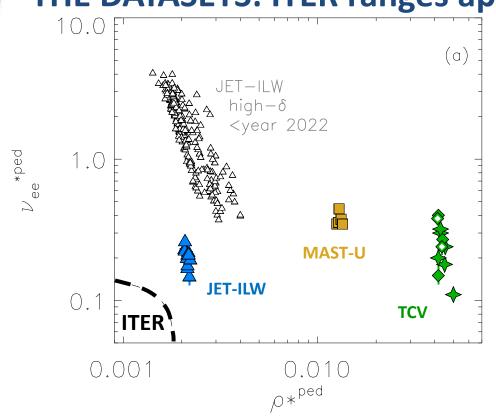
- \circ $\langle \delta \rangle = 0.5$
- o 155kA/1.4T
- $P_{NBI} + P_{ECRH} = 1.0 + 1.1MW$
- Gas scan

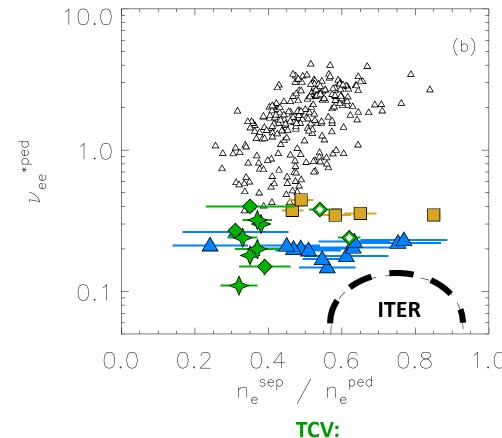
THE DATASETS: ITER ranges approached for JET-ILW

JET-ILW:

- \circ $\langle \delta \rangle = 0.4$
- \circ 1.4MA/3.8T, $q_{95} = 8.5$
- $P_{NBI} = 25MW$
- Gas scan

ightarrow approached ITER u_{ee}^{*ped} , ho_i^{*ped} , n^{sep}/n^{ped}


MAST-U:


- \circ $\langle \delta \rangle = 0.5$
- \circ 750kA/0.5T, $q_{95} = 6.7$
- $P_{NBI} = 3.2MW$
- Gas scan

- \circ $\langle \delta \rangle = 0.5$
- o 155kA/1.4T
- $P_{NBI} + P_{ECRH} = 1.0 + 1.1MW$
- Gas scan

THE DATASETS: ITER ranges approached for JET-ILW

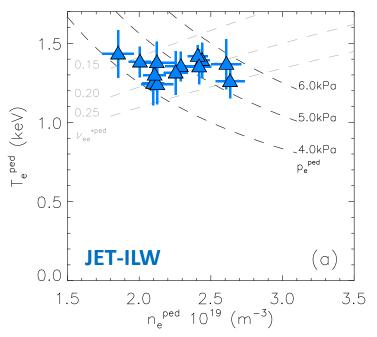
JET-ILW:

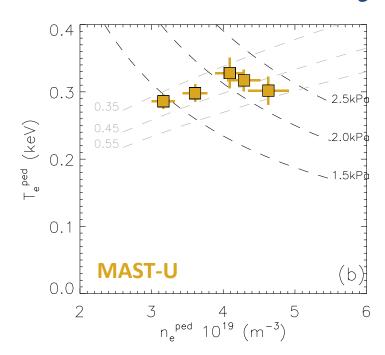
- $\circ \langle \delta \rangle = 0.4$
- \circ 1.4MA/3.8T, $q_{95} = 8.5$
- $P_{NBI} = 25MW$
- o Gas scan

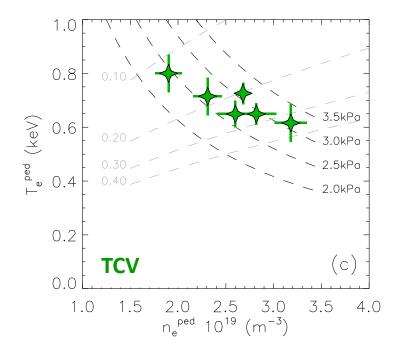
MAST-U:

approaching ITER v_{ee}^{*ped} , ρ_i^{*ped}

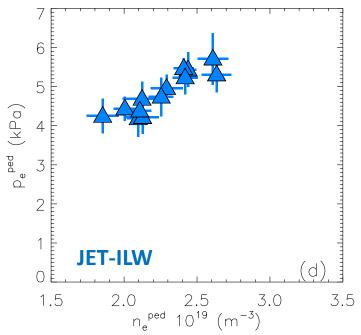
- \circ $\langle \delta \rangle = 0.5$
- 155kA/1.4T
 - $P_{NBI} + P_{ECRH} = 1.0 + 1.1MW$
- s scan O Gas scar
- ightarrow approached ITER u_{ee}^{*ped} , ho_{i}^{*ped} , n^{sep}/n^{ped}

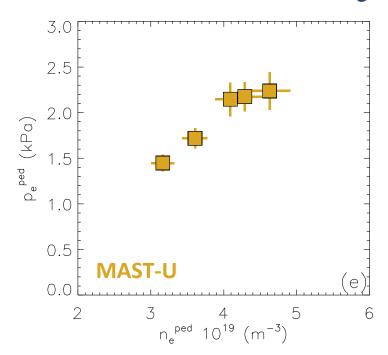

- 1. Reaching peeling limited pedestals in JET-ILW, MAST-U and TCV
- 2. The datasets
- 3. Effect of
 - ullet n_e^{ped} on p_e^{ped} in peeling limited pedestals in JET-ILW, MAST-U and TCV

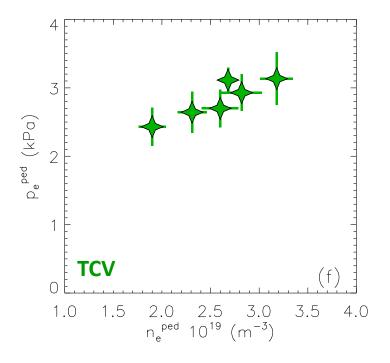

 - the isotope mass in peeling limited pedestals in JET-ILW
 - and corresponding pedestal predictions with Europed
- 4. Pedestal predictions in ITER
 - will ITER be limited by peeling or ballooning instabilites?
 - Is a transition from peeling to ballooning limited pedestals a problem?



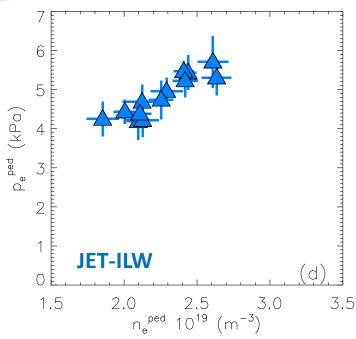
Pedestal pressure increases with increasing n_e^{ped}

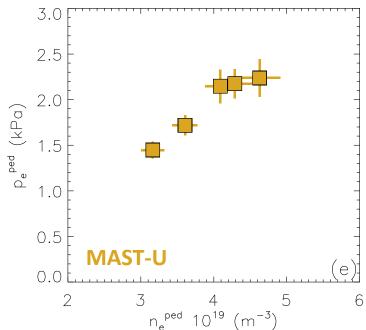


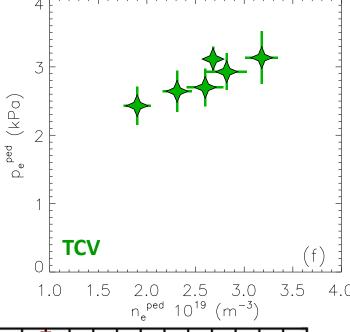


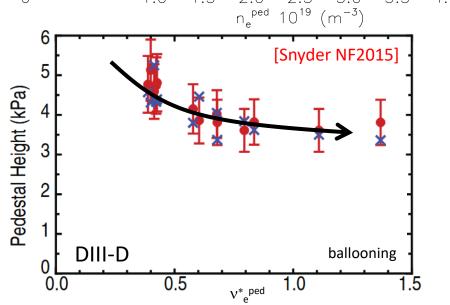

- With increasing n_e^{ped} :
 - o T_e^{ped} is not strongly affected (same for T_i^{ped})

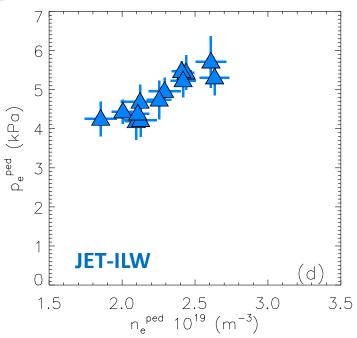
Pedestal pressure increases with increasing n_e^{ped}

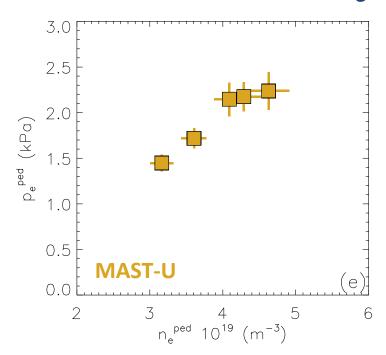


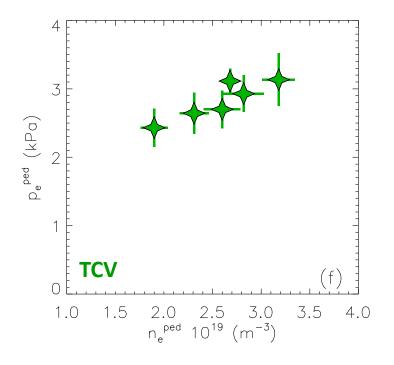



- With increasing n_e^{ped} :
 - o T_e^{ped} is not strongly affected (same for T_i^{ped})
 - o p_e^{ped} increases (same for p_{tot}^{ped})

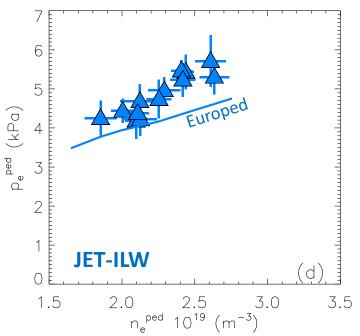

Pedestal pressure increases with increasing n_e^{ped}

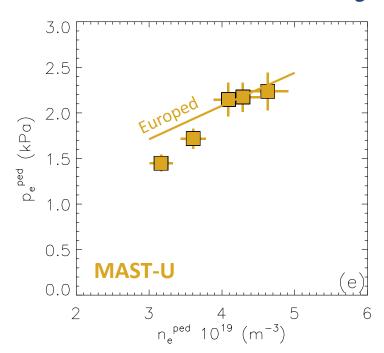


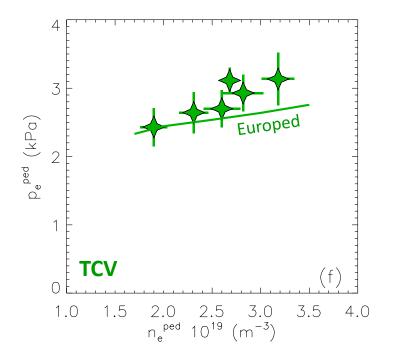

- With increasing n_e^{ped} :
 - o T_e^{ped} is not strongly affected (same for T_i^{ped})
 - $\circ p_e^{ped}$ increases (same for p_{tot}^{ped})
 - behavior opposite to what observed in ballooning limited pedestals



Pedestal pressure increases with increasing n_e^{ped}

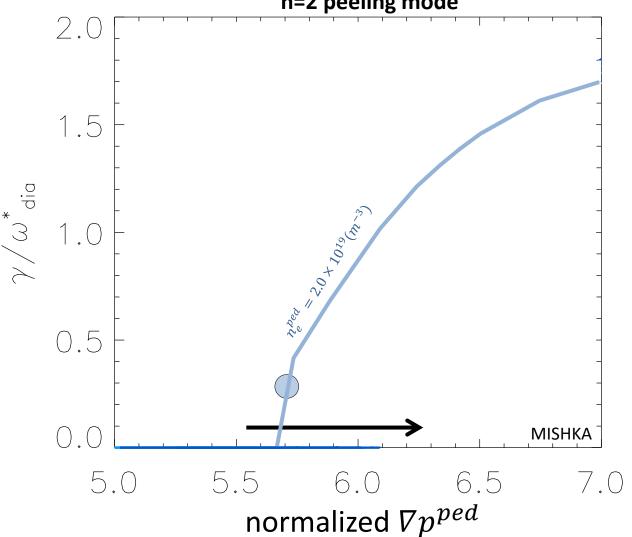





- With increasing n_e^{ped} :
 - o T_e^{ped} is not strongly affected (same for T_i^{ped})
 - $\circ p_e^{ped}$ increases (same for p_{tot}^{ped})
 - behavior opposite to what observed in ballooning limited pedestals
- Pedestal predictions:
 - Europed [Saarelma PPCF2018] implementing the EPED1 width scaling $w_p = k \sqrt{\beta_{\theta}^{ped}}$ (with k = 0.076 for JET-ILW, k = 0.11 for MAST-U, k = 0.15 for TCV)

Pedestal pressure increases with increasing n_e^{ped}

- With increasing n_e^{ped} :
 - o T_e^{ped} is not strongly affected (same for T_i^{ped})
 - $\circ p_e^{ped}$ increases (same for p_{tot}^{ped})
 - behavior opposite to what observed in ballooning limited pedestals
- Pedestal predictions:
 - Europed [Saarelma PPCF2018] implementing the EPED1 width scaling $w_p = k \sqrt{\beta_{\theta}^{ped}}$ (with k = 0.076 for JET-ILW, k = 0.11 for MAST-U, k = 0.15 for TCV)
 - Good qualitative agreement in all three machines

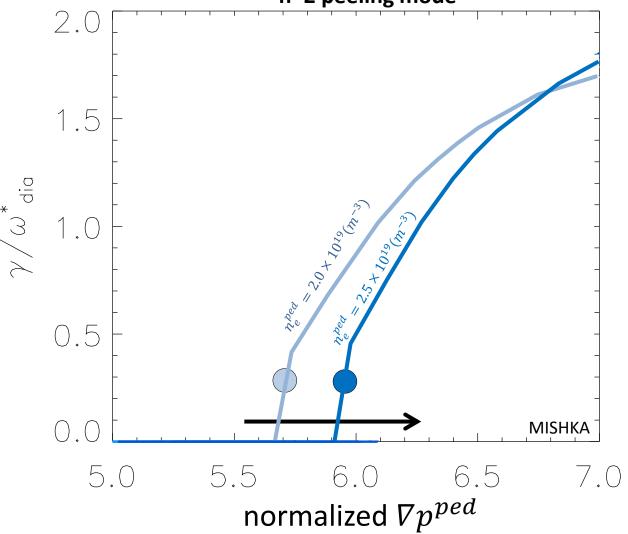


Increasing n_e^{ped} stabilizes peeling modes

JET-ILW example n=2 peeling mode

The increase of density stabilizes peeling modes

[Snyder PPCF2004], [Frassinetti NF2025]

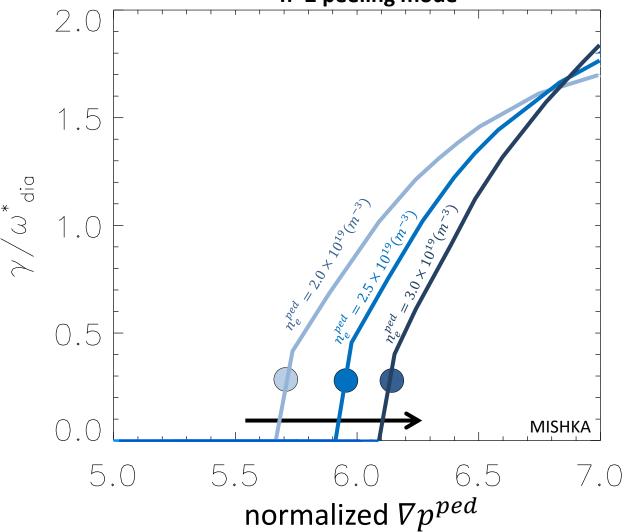

Increasing n_e^{ped} stabilizes peeling modes

JET-ILW example n=2 peeling mode

The increase of density stabilizes peeling modes

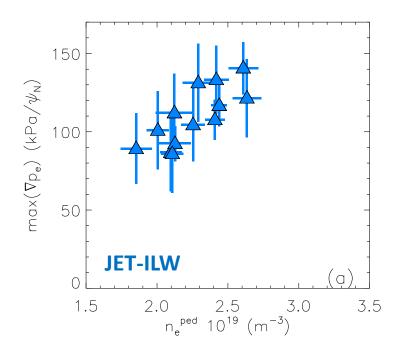
[Snyder PPCF2004], [Frassinetti NF2025]

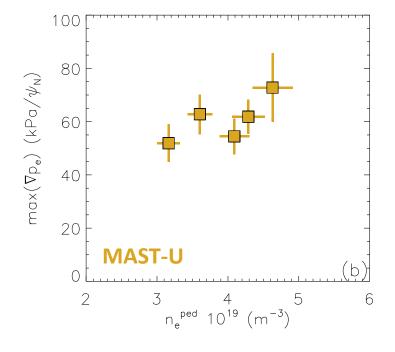
 $ightarrow
abla p^{ped}$ that triggers the peeling instability increases with increasing n_e^{ped}


Increasing n_e^{ped} stabilizes peeling modes

JET-ILW example n=2 peeling mode

The increase of density stabilizes peeling modes


[Snyder PPCF2004], [Frassinetti NF2025]


 $ightarrow
abla p^{ped}$ that triggers the peeling instability increases with increasing n_e^{ped}

Reasonable predictions approaching ITER ν^{*ped} , ρ^{*ped}

JET-ILW:

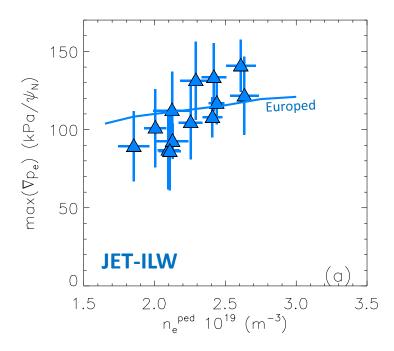
The increase in $p_e^{\it ped}$ is due to:

the increase in the gradient

MAST-U:

The increase in p_e^{ped} is due to:

the increase in the gradient



Reasonable predictions approaching ITER ν^{*ped} , ρ^{*ped}

100

80

60

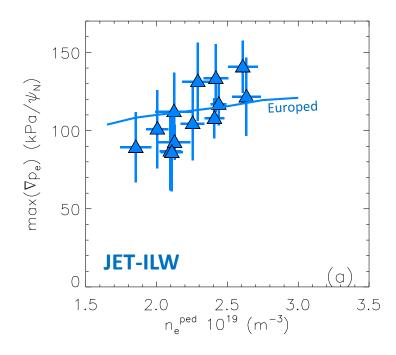
$\max(\nabla p_{\rm e})~({\rm kPa}/\psi_{\rm N})$ 40 20 $n_e^{ped} 10^{19} (m^{-3})$

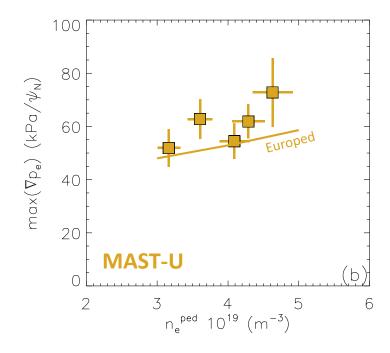
JET-ILW:

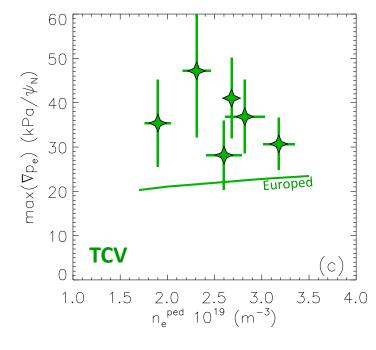
The increase in p_e^{ped} is due to:

- the increase in the gradient
 - > effect due to the stabilization of peeling modes

MAST-U:


The increase in p_e^{ped} is due to:


- the increase in the gradient
 - effect due to the stabilization of peeling modes



Reasonable predictions approaching ITER ν^{*ped} , ρ^{*ped}

JET-ILW:

The increase in p_e^{ped} is due to:

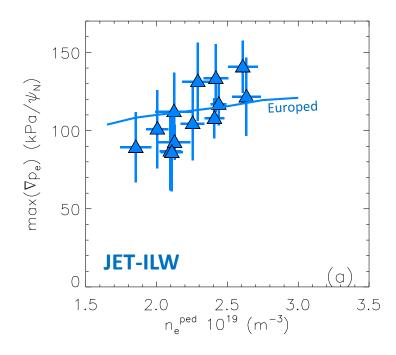
- o the increase in the gradient
 - effect due to the stabilization of peeling modes

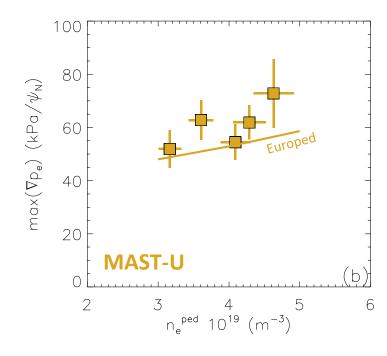
MAST-U:

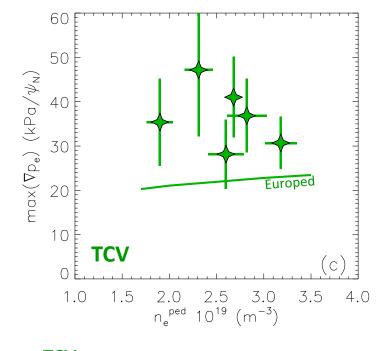
The increase in p_e^{ped} is due to:

- the increase in the gradient
 - effect due to the stabilization of peeling modes

TCV:


The increase in p_e^{ped} is due to:


- NOT the increase in the gradient
 - effect NOT due to the stabilization, but to pedestal widening



Reasonable predictions approaching ITER u^{*ped} , ρ^{*ped}

JET-ILW:

The increase in p_e^{ped} is due to:

- the increase in the gradient
 - effect due to the stabilization peeling modes

MAST-U:

The increase in p_e^{ped} is due to

approaching ITER u_{ee}^{*ped} , ho_i^{*ped}

modes

TCV:

The increase in p_e^{ped} is due to

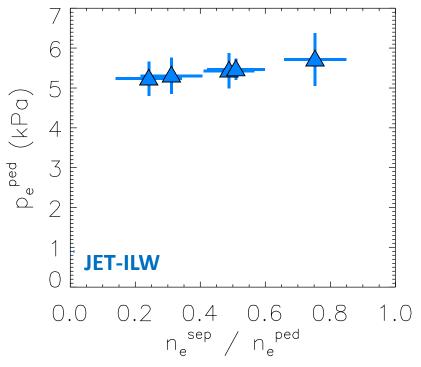
- NOT the increase in the gradien
 - ffect NOT due to the stabilization, but to pedestal widening

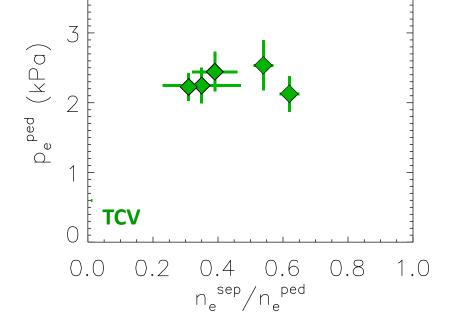
- Good qualitative agreement with Europed
- Good understanding

- Good qualitative agreement with Europed
- Good understanding

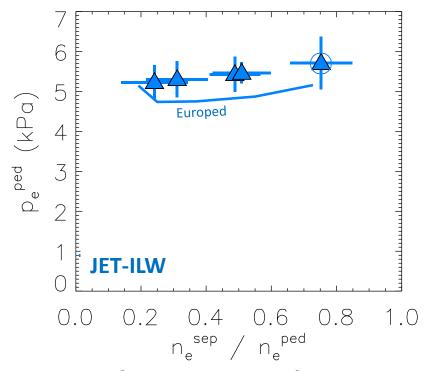
- No reasonable agreement with Europed
- No good understanding yet

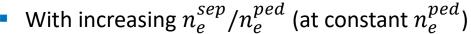
- 1. Reaching peeling limited pedestals in JET-ILW, MAST-U and TCV
- 2. The datasets


3. Effect of

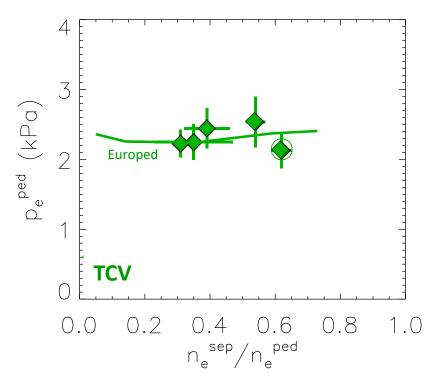

- n_e^{sep}/n_e^{ped} on p_e^{ped} in peeling limited pedestals in JET-ILW, MAST-U and TCV
- the isotope mass in peeling limited pedestals in JET-ILW
- and corresponding pedestal predictions with Europed
- 4. Pedestal predictions in ITER
 - will ITER be limited by peeling or ballooning instabilites?
 - Is a transition from peeling to ballooning limited pedestals a problem?

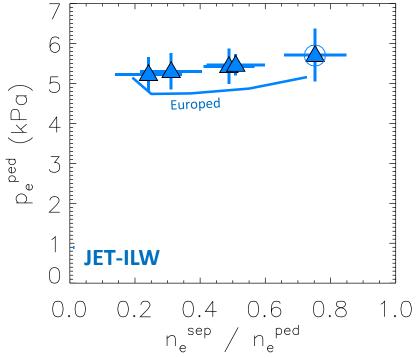
MAST-U dataset:

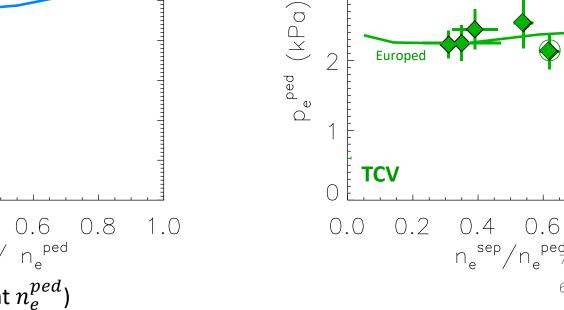

 n_e^{sep}/n_e^{ped} variation achieved only via n_e^{ped} variation \rightarrow not discussed here



- With increasing n_e^{sep}/n_e^{ped} (at constant n_e^{ped})
 - o T_e^{ped} is not strongly affected (same for T_i^{ped})
 - $\circ p_e^{ped}$ is rather constant (same for p_{tot}^{ped})




- o T_e^{ped} is not strongly affected (same for T_i^{ped})
- o p_e^{ped} is rather constant (same for p_{tot}^{ped})


Pedestal predictions:

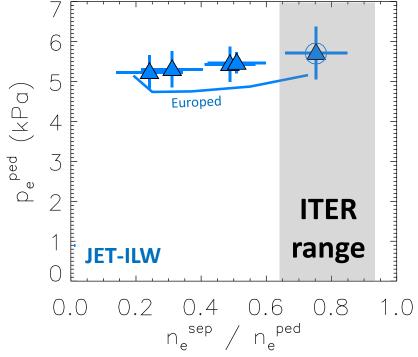
Good qualitative agreement in both JET-ILW and TCV

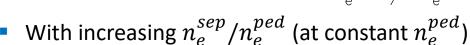
- With increasing n_e^{sep}/n_e^{ped} (at constant n_e^{ped})
 - $\circ T_e^{ped}$ is not strongly affected (same for T_i^{ped})
 - o p_e^{ped} is rather constant (same for p_{tot}^{ped})
 - behavior opposite to what observed in ballooning limited pedestals
- Pedestal predictions:
 - Good qualitative agreement in both JET-ILW and TCV

1.0

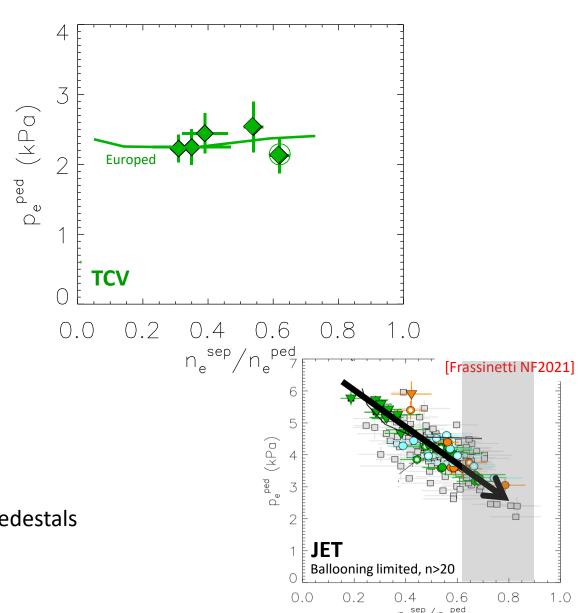
[Frassinetti NF2021]

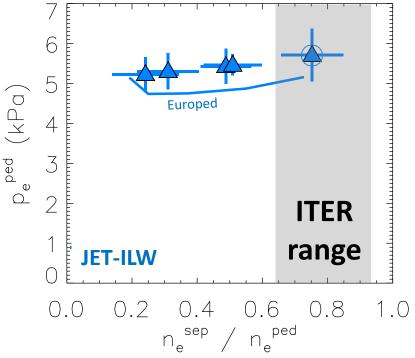
0.8

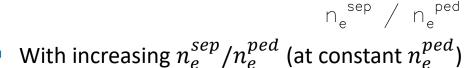

0.8

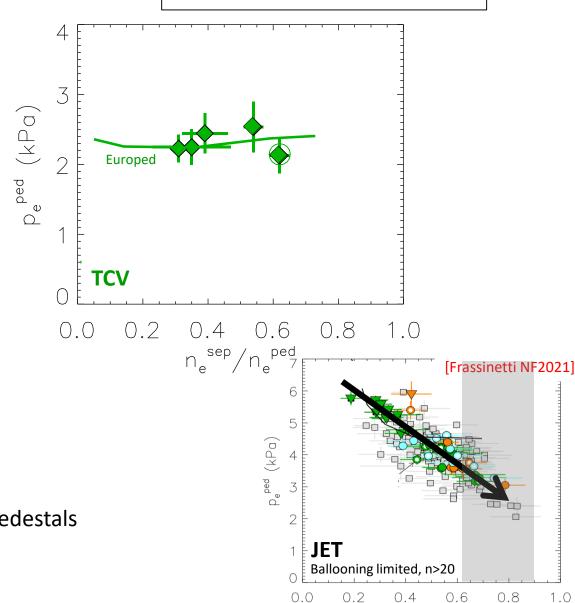

JET

Ballooning limited, n>20


p_e (kPa)

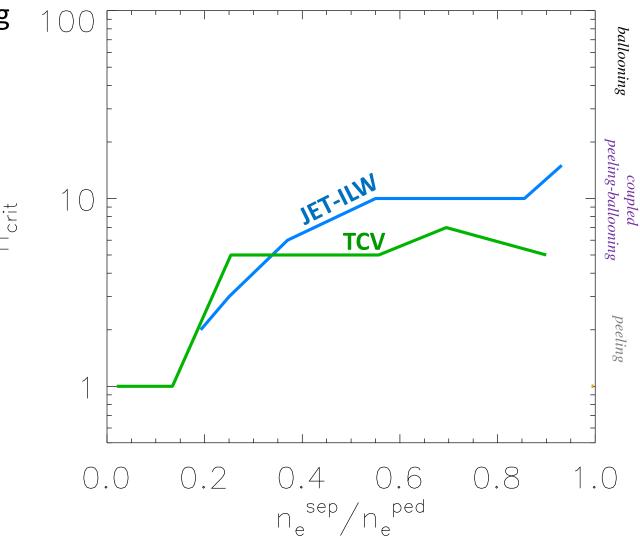



- $\circ T_e^{ped}$ is not strongly affected (same for T_i^{ped})
- o p_e^{ped} is rather constant (same for p_{tot}^{ped})
 - behavior opposite to what observed in ballooning limited pedestals
- Pedestal predictions:
 - Good qualitative agreement in both JET-ILW and TCV

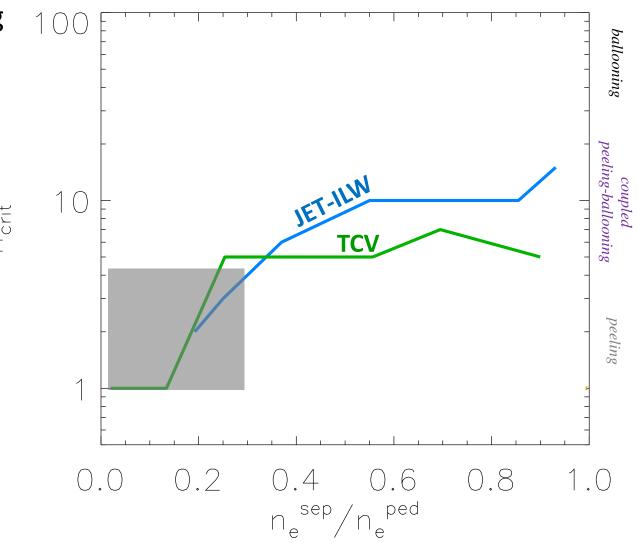


Good news for ITER

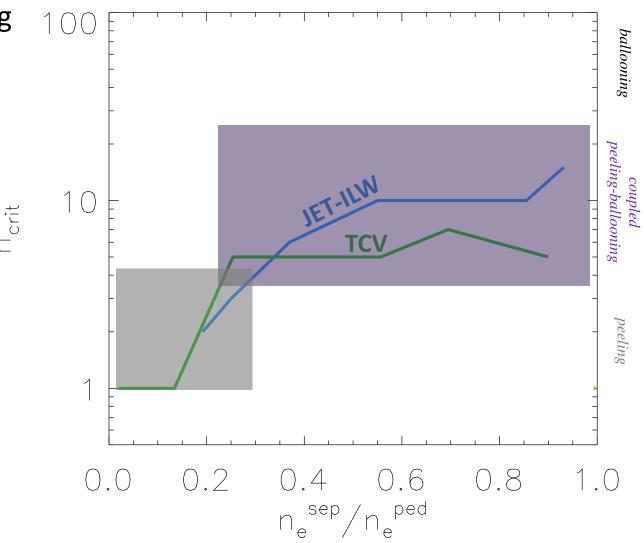
- o T_e^{ped} is not strongly affected (same for T_i^{ped})
- o p_e^{ped} is rather constant (same for p_{tot}^{ped})
 - behavior opposite to what observed in ballooning limited pedestals
- Pedestal predictions:
 - Good qualitative agreement in both JET-ILW and TCV



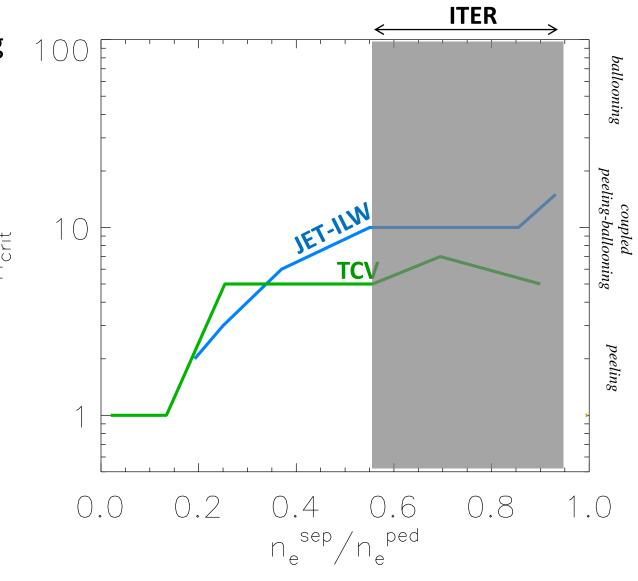
• Increasing n_e^{sep}/n_e^{ped} destabilizes ballooning modes [Dunne PPCF2017, Frassinetti NF2021]



- Increasing n_e^{sep}/n_e^{ped} destabilizes ballooning modes [Dunne PPCF2017, Frassinetti NF2021]
 - The pestal moves from being peeling limited to ballooning limited
 - ➤ Very clear for JET-ILW and TCV

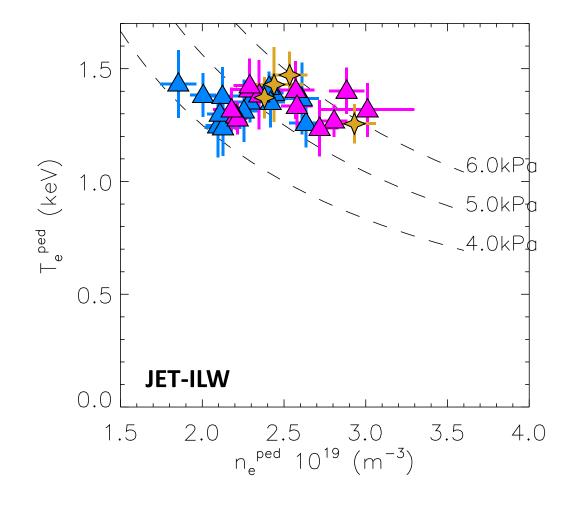


- Increasing n_e^{sep}/n_e^{ped} destabilizes ballooning modes [Dunne PPCF2017, Frassinetti NF2021]
 - The pestal moves from being peeling limited to ballooning limited
 - ➤ Very clear for JET-ILW and TCV


- Increasing n_e^{sep}/n_e^{ped} destabilizes ballooning modes [Dunne PPCF2017, Frassinetti NF2021]
 - The pestal moves from being peeling limited to ballooning limited
 - ➤ Very clear for JET-ILW and TCV

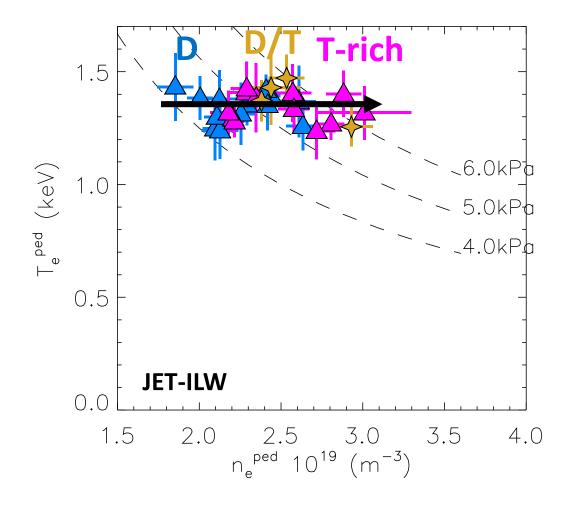
- Increasing n_e^{sep}/n_e^{ped} destabilizes ballooning modes [Dunne PPCF2017, Frassinetti NF2021]
 - The pestal moves from being peeling limited to ballooning limited
 - ➤ Very clear for JET-ILW and TCV

- ITER will operate at high n_e^{sep}/n_e^{ped}
 - → this issue must be investigated

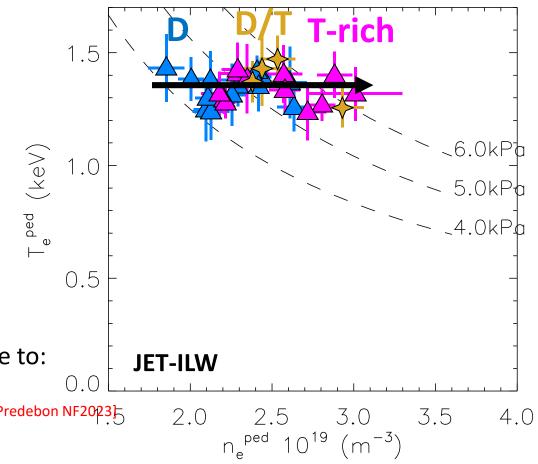

- 1. Reaching peeling limited pedestals in JET-ILW, MAST-U and TCV
- 2. The datasets

3. Effect of

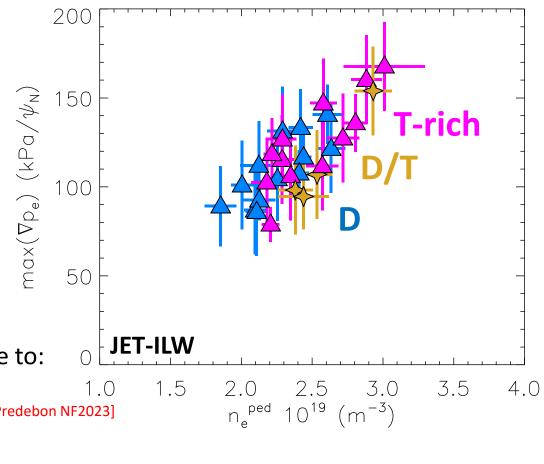
- $= n_e^{sep}/n_e^{ped}$ on p_e^{ped} in peeling limited pedestals in JET-ILW, MAST-U and TCV
- the isotope mass in peeling limited pedestals in JET-ILW and corresponding pedestal predictions with Europed
- 4. Pedestal predictions in ITER
 - will ITER be limited by peeling or ballooning instabilites?
 - Is a transition from peeling to ballooning limited pedestals a problem?



- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff} = 2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:

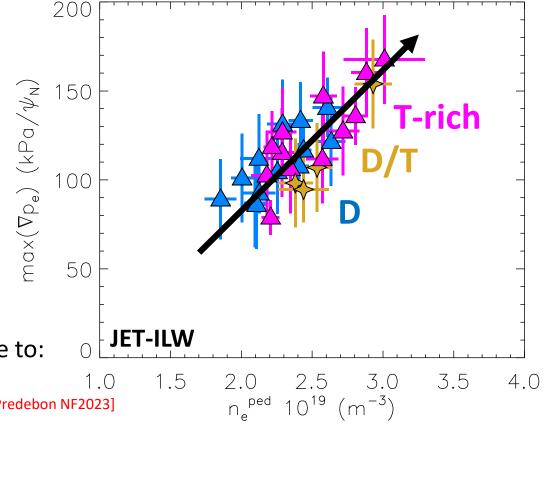


- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff} = 2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff} 2. n_e^{ped} increases with increasing A_{eff}


- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff}=2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff}
 - \rightarrow 2. n_e^{ped} increases with increasing A_{eff} , possibly due to:
 - o reduction of inter-ELM pedestal particle transport [Predebon NF2023]5
 - o and/or increase in n_e^{sep} [Saarelma NF2024]

- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff} = 2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff}
 - \rightarrow 2. n_e^{ped} increases with increasing A_{eff} , possibly due to:
 - o reduction of inter-ELM pedestal particle transport [Predebon NF2023]
 - o and/or increase in n_e^{sep} [Saarelma NF2024]
 - \longrightarrow 3. n_e^{ped} stabilizing effect on peeling modes

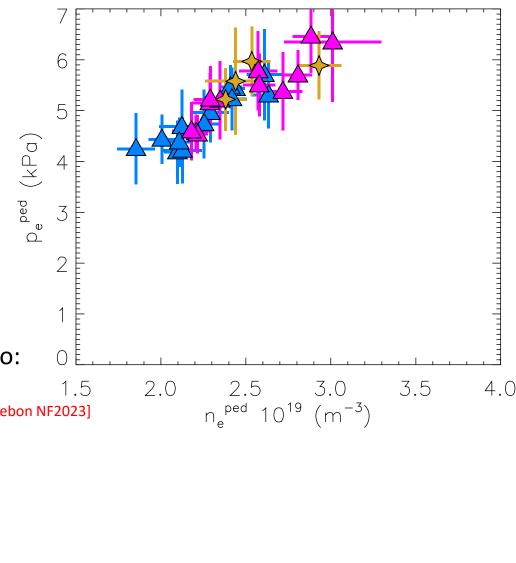
[Frassinetti NF2025, IAEA2025]



[Frassinetti NF2025, IAEA2025]

- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff}=2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff}
 - \rightarrow 2. n_e^{ped} increases with increasing A_{eff} , possibly due to:
 - o reduction of inter-ELM pedestal particle transport [Predebon NF2023]
 - o and/or increase in n_e^{sep} [Saarelma NF2024]
 - \longrightarrow 3. n_e^{ped} stabilizing effect on peeling modes

 \rightarrow 4. ∇p_e^{ped} increases

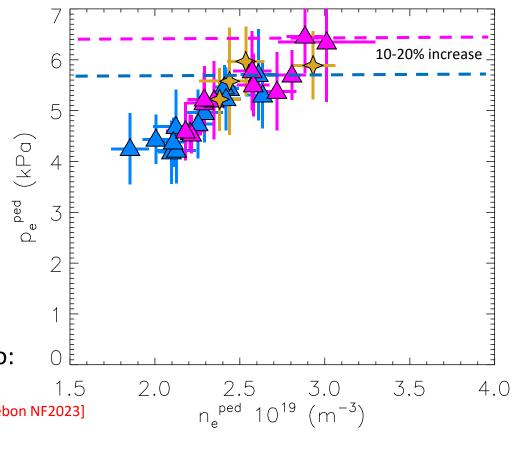


[Frassinetti NF2025, IAEA2025]

- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff} = 2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff}
 - \rightarrow 2. n_e^{ped} increases with increasing A_{eff} , possibly due to:
 - o reduction of inter-ELM pedestal particle transport [Predebon NF2023]
 - o and/or increase in n_e^{sep} [Saarelma NF2024]
 - \longrightarrow 3. n_e^{ped} stabilizing effect on peeling modes

 $4. \nabla p_e^{ped}$ increases

 \rightarrow 5. p^{ped} increases



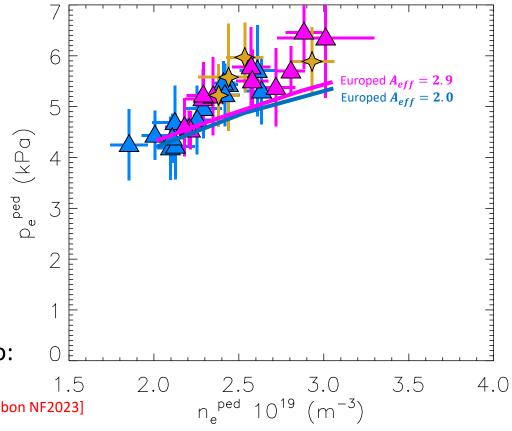
[Frassinetti NF2025, IAEA2025]

- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff} = 2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff}
 - $2. n_e^{ped}$ increases with increasing A_{eff} , possibly due to:
 - o reduction of inter-ELM pedestal particle transport [Predebon NF2023]
 - o and/or increase in n_e^{sep} [Saarelma NF2024]
 - \longrightarrow 3. n_e^{ped} stabilizing effect on peeling modes

 \rightarrow 4. ∇p_e^{ped} increases

 \rightarrow 5. p^{ped} increases

Positive result in view of future ITER D/T operation



[Frassinetti NF2025, IAEA2025]

- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff} = 2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff}
 - $ightharpoonup 2. \ n_e^{ped}$ increases with increasing A_{eff} , possibly due to:
 - o reduction of inter-ELM pedestal particle transport [Predebon NF2023]
 - o and/or increase in n_e^{sep} [Saarelma NF2024]
 - \longrightarrow 3. n_e^{ped} stabilizing effect on peeling modes

 \downarrow 4. ∇p_e^{ped} increases

 \rightarrow 5. p^{ped} increases

- Pedestal predictions:
 - Reasonable qualitative agreement
 - No direct effect of the isotope mass in this scenario

[Frassinetti NF2025, IAEA2025]

- A unique dataset in JET-ILW low v_{ee}^{*ped} /peeling limited pedestal has been obtained:
 - \circ pure deuterium, $A_{eff} = 2.0$
 - o mixed deuterium/tritium, $A_{eff} = 2.5$
 - \circ tritium-rich, $A_{eff} = 2.9$
- Key results:
 - 1. Increase in A_{eff}
 - 2. n_e^{ped} increases with increasing A_{eff} , possibly due to:
 - o reduction of inter-ELM pedestal particle transport [Predebon NF2023]
 - o and/or increase in n_e^{sep} [Saarelma NF2024]
 - \rightarrow 3. n_e^{ped} stabilizing effect on peeling modes

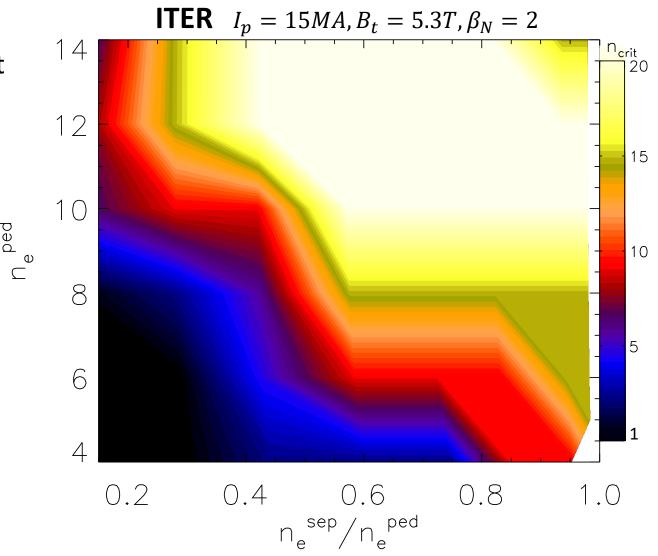
 \rightarrow 5. p^{ped} increases

- 1. Reaching peeling limited pedestals in JET-ILW, MAST-U and TCV
- 2. The datasets
- 3. Effect of

 - the isotope mass in peeling limited pedestals in JET-ILW
 - and corresponding pedestal predictions with Europed
- 4. Pedestal predictions in ITER
 - will ITER be limited by peeling or ballooning instabilites?
 - is this an issue?

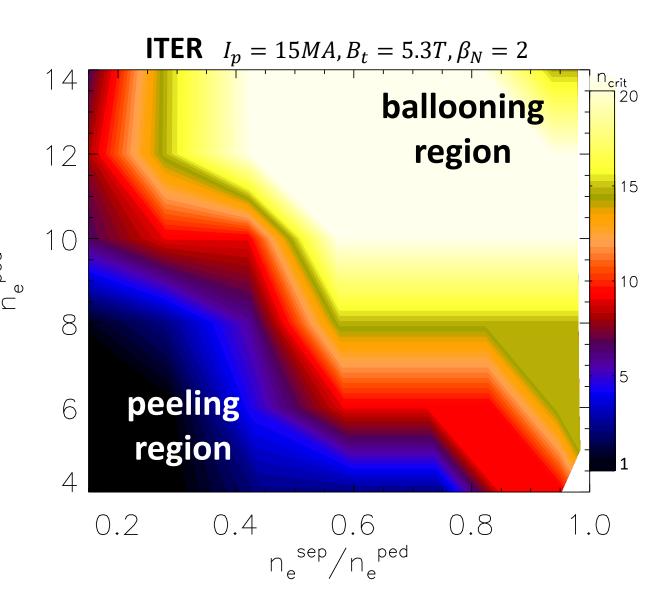
ITER predictions

 Europed has been used to predict the limiting pedestal instability in the ITER Q=10 scenario at


$$oldsymbol{0} I_{p} = 15MA, B_{t} = 5.3T, \beta_{N} = 2$$

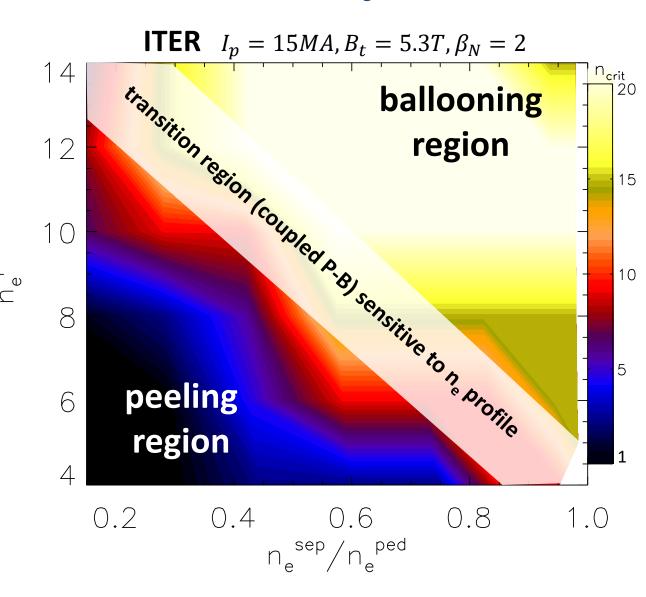
shape before the new baseline

ITER predictions


- Europed has been used to predict the limiting pedestal instability in the ITER Q=10 scenario at
 - $oldsymbol{0} I_{p} = 15MA, B_{t} = 5.3T, \beta_{N} = 2$
 - shape before the new baseline
- Predicted pedestal instabilities:

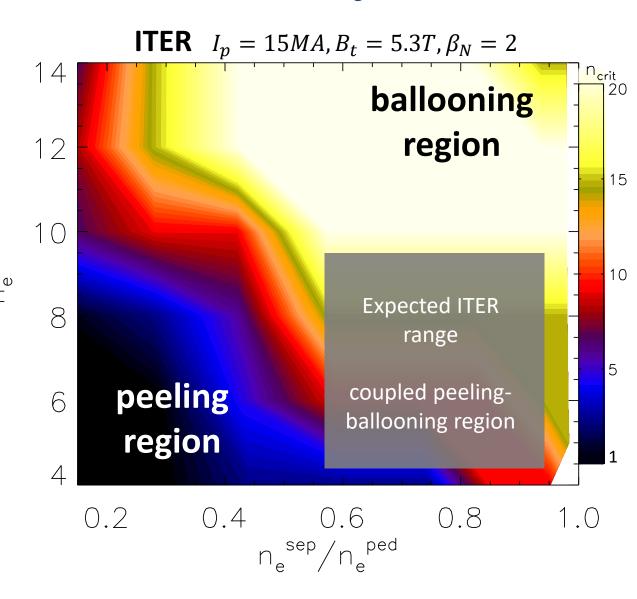
ITER predictions

- Europed has been used to predict the limiting pedestal instability in the ITER Q=10 scenario at
 - $OI_p = 15MA, B_t = 5.3T, \beta_N = 2$
 - shape before the new baseline
- Predicted pedestal instabilities:
 - \circ peeling at low n_e^{sep}/n_e^{ped} and low n_e^{ped}
 - $_{\odot}$ ballooning at high n_{e}^{sep}/n_{e}^{ped} and high n_{e}^{ped}



ITER predictions: pedestal instabilities very sensitive to n_e profile

- Europed has been used to predict the limiting pedestal instability in the ITER Q=10 scenario at
 - $OI_p = 15MA, B_t = 5.3T, \beta_N = 2$
 - shape before the new baseline
- Predicted pedestal instabilities:
 - \circ peeling at low n_e^{sep}/n_e^{ped} and low n_e^{ped}
 - \circ ballooning at high n_e^{sep}/n_e^{ped} and high n_e^{ped}
 - → sharp transition region
 - result strongly dependent on the details of the density profiles consistent with [Maget NF2013]

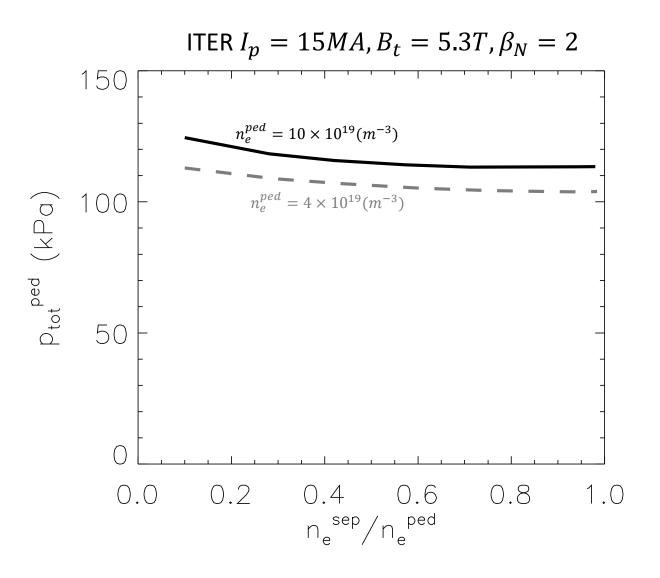


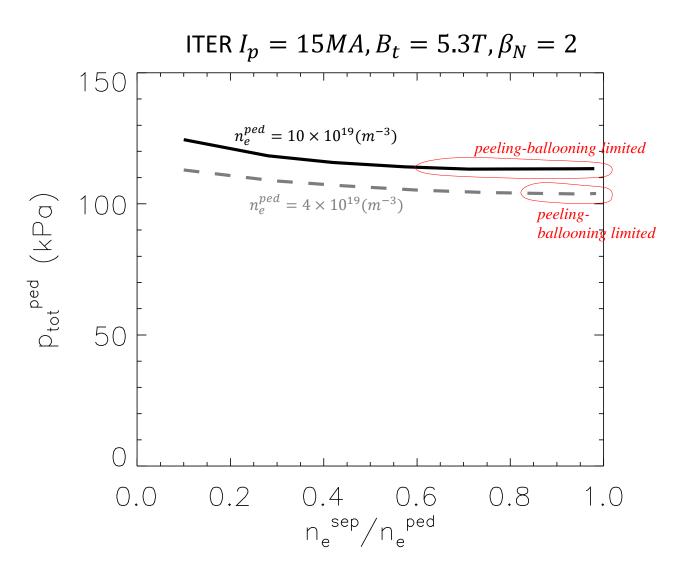
ITER predictions: pedestal instabilities very sensitive to n_e profile

- Europed has been used to predict the limiting pedestal instability in the ITER Q=10 scenario at
 - $OI_p = 15MA, B_t = 5.3T, \beta_N = 2$
 - shape before the new baseline
- Predicted pedestal instabilities:
 - \circ peeling at low n_e^{sep}/n_e^{ped} and low n_e^{ped}
 - $_{\odot}$ ballooning at high n_{e}^{sep}/n_{e}^{ped} and high n_{e}^{ped}
 - → sharp transition region
 - result strongly dependent on the details of the density profiles consistent with [Maget NF2013]



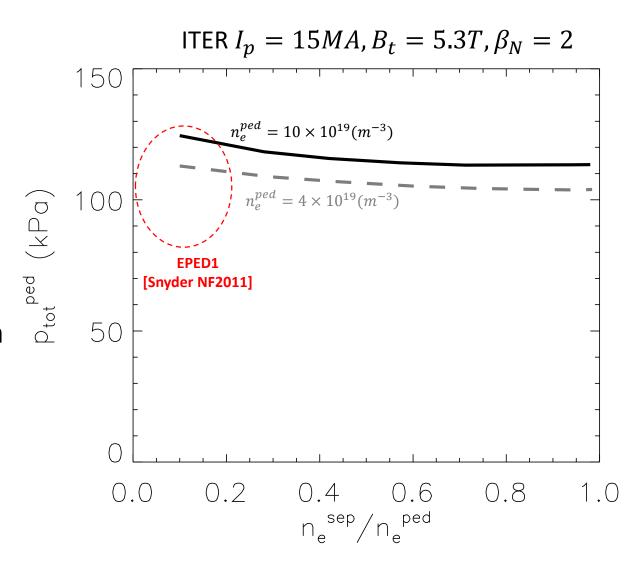
ITER predictions: pedestal instabilities very sensitive to n_e profile


- Europed has been used to predict the limiting pedestal instability in the ITER Q=10 scenario at
 - $OI_p = 15MA, B_t = 5.3T, \beta_N = 2$
 - shape before the new baseline
- Predicted pedestal instabilities:
 - \circ peeling at low n_e^{sep}/n_e^{ped} and low n_e^{ped}
 - $_{\odot}$ ballooning at high n_{e}^{sep}/n_{e}^{ped} and high n_{e}^{ped}
 - → sharp transition region
 - result strongly dependent on the details of the density profiles consistent with [Maget NF2013]



• The degrading effects of n_e^{sep}/n_e^{ped} is negligible.

- The degrading effects of n_e^{sep}/n_e^{ped} is negligible.
 - o likely because the transition to balloning instabilities occurs at already high n_e^{sep}/n_e^{ped}



- The degrading effects of n_e^{sep}/n_e^{ped} is negligible.
 - o likely because the transition to balloning instabilities occurs at already high n_e^{sep}/n_e^{ped}

• At low n_e^{sep}/n_e^{ped} results consistent with earlier predictions

- The degrading effects of $n_{\rho}^{sep}/n_{\rho}^{ped}$ is negligible.
 - likely because the transition to balloning instabilities occurs at already high n_e^{sep}/n_e^{ped}

• At low n_e^{sep}/n_e^{ped} results consistent with earlier predictions

ITER $I_p = 15MA$, $B_t = 5.3T$, $\beta_N = 2$ 150 $n_{\rho}^{ped} = 10 \times 10^{19} (m^{-3})$ 100 [Snyder NF2011] 0.2 0.8

Positive result for ITER

- Low v_{ee}^{*ped} /peeling limited pedestals reached in JET-ILW, MAST-U, TCV
- No major qualitative difference observed between metal wall and carbon wall machines
- Some promising results in view of ITER:
 - $\circ p^{ped}$ does not degrade with increasing n_e^{sep}/n_e^{ped}
 - $\circ p^{ped}$ increases with increasing isotope mass
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ρ_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - Q=10 scenario will have coupled peeling-ballooning instabilities
 - However, no pedestal degradation expected
- The work increases the relevance for ITER of small/no ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited pedestals.

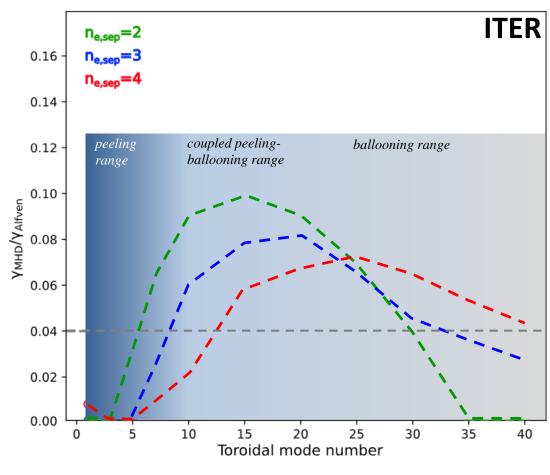
- Low v_{ee}^{*ped} /peeling limited pedestals reached in JET-ILW, MAST-U, TCV
- No major qualitative difference observed between metal wall and carbon wall machines
- Some promising results in view of ITER:
 - $\circ p^{ped}$ does not degrade with increasing n_e^{sep}/n_e^{ped}
 - $\circ p^{ped}$ increases with increasing isotope mass
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ρ_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - Q=10 scenario will have coupled peeling-ballooning instabilities
 - However, no pedestal degradation expected
- The work increases the relevance for ITER of small/no ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited pedestals.

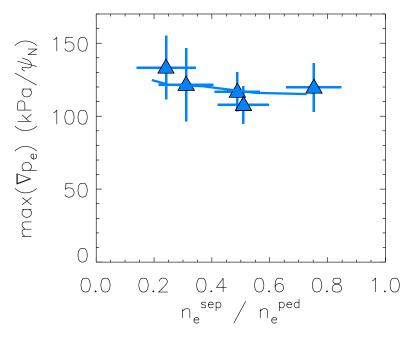
- Low v_{ee}^{*ped} /peeling limited pedestals reached in JET-ILW, MAST-U, TCV
- No major qualitative difference observed between metal wall and carbon wall machines
- Some promising results in view of ITER:
 - $\circ p^{ped}$ does not degrade with increasing n_e^{sep}/n_e^{ped}
 - $\circ p^{ped}$ increases with increasing isotope mass
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ρ_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - Q=10 scenario will have coupled peeling-ballooning instabilities
 - However, no pedestal degradation expected
- The work increases the relevance for ITER of small/no ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited pedestals.

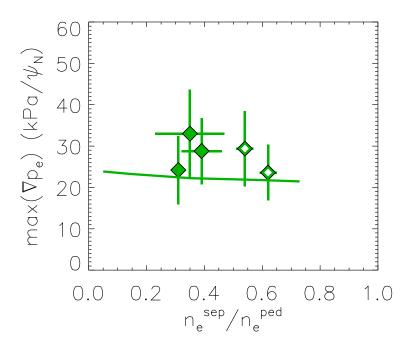
- Low v_{ee}^{*ped} /peeling limited pedestals reached in JET-ILW, MAST-U, TCV
- No major qualitative difference observed between metal wall and carbon wall machines
- Some promising results in view of ITER:
 - \circ p^{ped} does not degrade with increasing n_e^{sep}/n_e^{ped}
 - $\circ p^{ped}$ increases with increasing isotope mass
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ρ_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - Q=10 scenario will have coupled peeling-ballooning instabilities
 - However, no pedestal degradation expected
- The work increases the relevance for ITER of small/no ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited pedestals.

- Low v_{ee}^{*ped} /peeling limited pedestals reached in JET-ILW, MAST-U, TCV
- No major qualitative difference observed between metal wall and carbon wall machines
- Some promising results in view of ITER:
 - $\circ p^{ped}$ does not degrade with increasing n_e^{sep}/n_e^{ped}
 - $\circ p^{ped}$ increases with increasing isotope mass
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ho_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - Q=10 scenario will have coupled peeling-ballooning instabilities
 - However, no pedestal degradation expected
- The work increases the relevance for ITER of small/no ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited pedestals.

- Low v_{ee}^{*ped} /peeling limited pedestals reached in JET-ILW, MAST-U, TCV
- No major qualitative difference observed between metal wall and carbon wall machines
- Some promising results in view of ITER:
 - $\circ p^{ped}$ does not degrade with increasing n_e^{sep}/n_e^{ped}
 - $\circ p^{ped}$ increases with increasing isotope mass
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ρ_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - Q=10 scenario will have coupled peeling-ballooning instabilities
 - However, no pedestal degradation expected
- The work increases the relevance for ITER of small/no ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited pedestals.

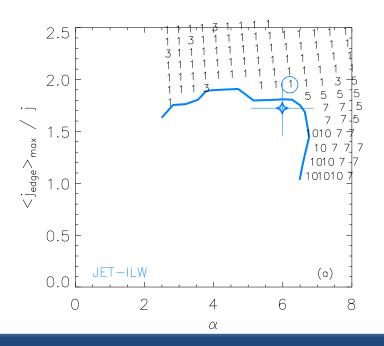

- Low v_{ee}^{*ped} /peeling limited pedestals reached in JET-ILW, MAST-U, TCV
- No major qualitative difference observed between metal wall and carbon wall machines
- Some promising results in view of ITER:
 - $\circ p^{ped}$ does not degrade with increasing n_e^{sep}/n_e^{ped}
 - $\circ p^{ped}$ increases with increasing isotope mass
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ρ_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - Q=10 scenario will have coupled peeling-ballooning instabilities
 - However, no pedestal degradation expected
- The work increases the relevance for ITER of small/no ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited pedestals.

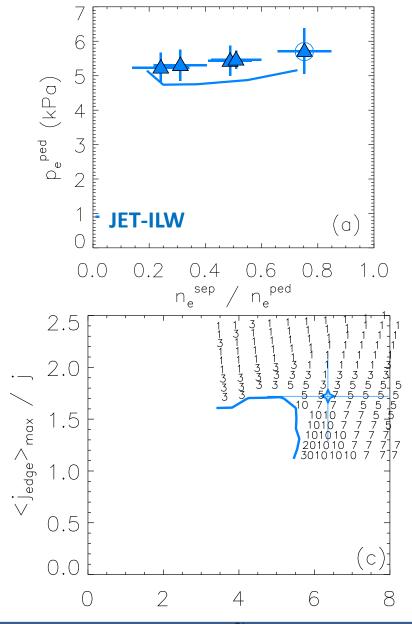


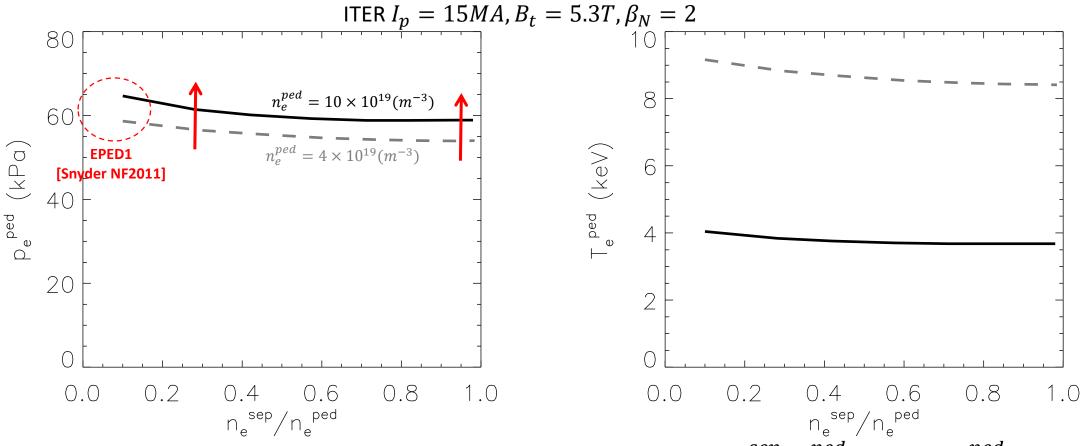

[Luda NF2025]

- Fusion power in ITER will scale as $P_{fus} \sim \left(p^{ped}\right)^2$ [Kinsey IAEA2010,NF2011]
 - O It is crucial to:
 - understand the pedestal behavior in present days machines.
 - > validate our pedestal predictive codes
 - > improve ITER pedestal predictions
- Pedestal predictions for ITER have been done already for many years. Some examples:
 - EPED model
 - >ITER pedestal is likely limited by peeling instabilities \rightarrow p^{ped} increases with increasing n^{ped} [Snyder NF2011]
 - Pedestal stability
 - >ITER pedestal might be close to the transition between peeling and ballooning instabilities [Saarelma NF2012]
 - The result is very sensitive to the exact J_{bs} in the pedestal [Maget NF2013]
 - IMEP model
 - ➤ITER pedestal might be limited by ballooning instabilities [Luda NF2025]

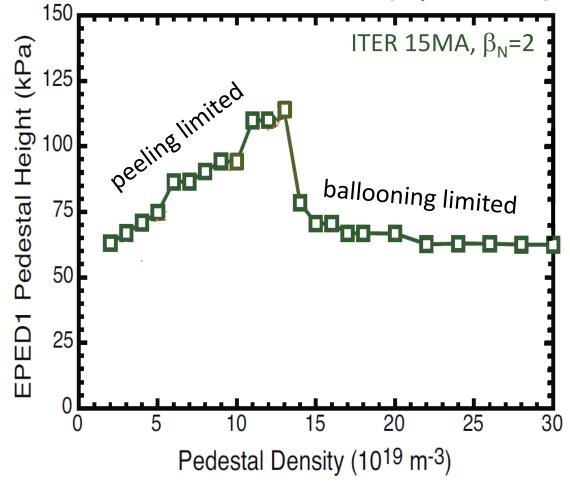
Effect of n_e^{sep}/n_e^{ped} on pedestal pressure


- With increasing n_e^{sep}/n_e^{ped} (at constant n_e^{ped})
 - o T_e^{ped} is not strongly affected (same for T_i^{ped})
 - o p_e^{ped} is rather constant (same for p_{tot}^{ped})
 - behavior opposite to what observed in ballooning limited pedestals
- Pedestal predictions:
 - Good qualitative agreement in both JET-ILW and TCV

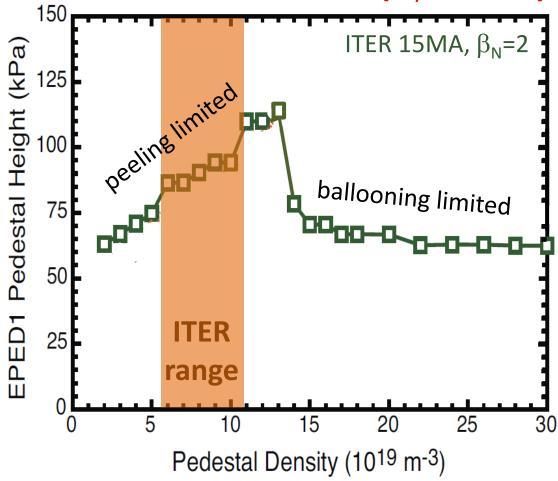



Increasing n_e^{sep}/n_e^{ped} can effects on the global pedestal stability

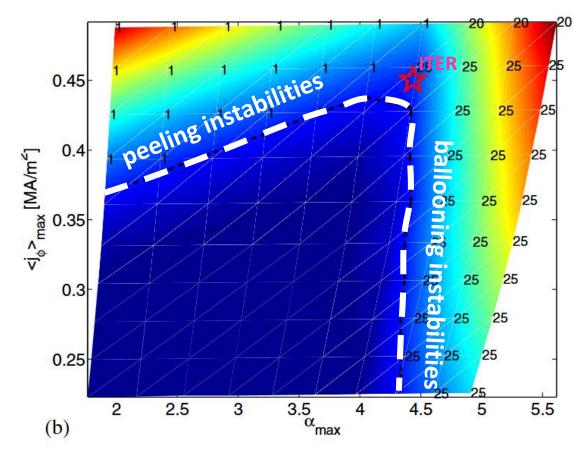
- Increasing n_e^{sep}/n_e^{ped} destabilizes balloning modes
 - o increasing n_e^{sep}/n_e^{ped} can shift the pedestal from peeling limited to ballooning limited



- The transition to ballooning limited pedestals occurs at already high n_e^{sep}/n_e^{ped} and high n_e^{ped}
 - o the degrading effects of n_e^{sep}/n_e^{ped} is negligible.
 - o p_e^{ped} still incrases with increasing n_e^{ped}
- Results consistent with earlier predictions

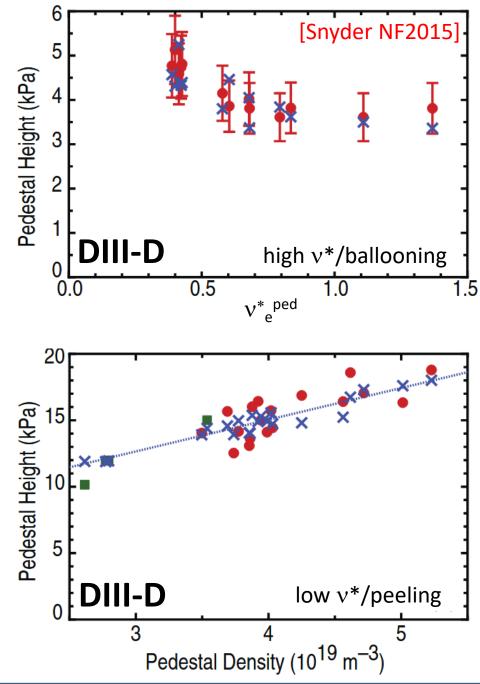


- The pedestal plays a major role for ITER:
 - o fusion power will scale as $P_{fus} \sim (p^{ped})^2$
- ITER pedestal predictions have been done already for many years. Examples:
 - EPED model



- The pedestal plays a major role for ITER:
 - o fusion power will scale as $P_{fus} \sim (p^{ped})^2$
- ITER pedestal predictions have been done already for many years. Examples:
 - EPED model
 - ➤ ITER pedestal is likely limited by peeling instabilities [Snyder NF2011]

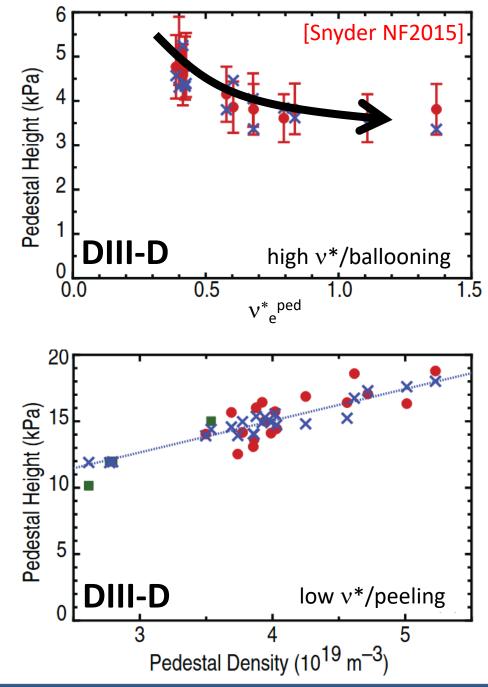
- The pedestal plays a major role for ITER:
 - o fusion power will scale as $P_{fus} \sim (p^{ped})^2$
- ITER pedestal predictions have been done already for many years. Examples:
 - EPED model
 - ➤ ITER pedestal is likely limited by peeling instabilities [Snyder NF2011]
 - Pedestal stability
 - ➤ ITER pedestal might be close to the transition between peeling and ballooning instabilities [Saarelma NF2012]
 - The result is very sensitive to the pedestal J_{bs} [Maget NF2013]



- Different pedestal behavior expected depending on the limiting instability:
 - oballooning instabilities:
 - $\triangleright p^{ped}$ decreases with increasing n^{ped}

opeeling instabilities:

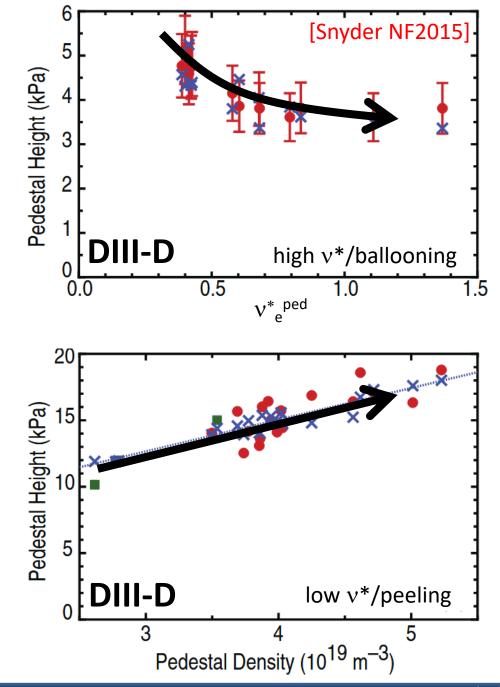
 $ightharpoonup p^{ped}$ increases with increasing n^{ped}



- Different pedestal behavior expected depending on the limiting instability:
 - oballooning instabilities:
 - $\triangleright p^{ped}$ decreases with increasing n^{ped}

opeeling instabilities:

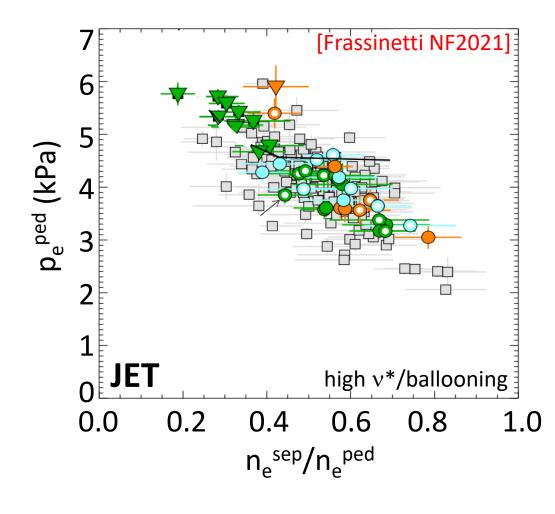
 $ightharpoonup p^{ped}$ increases with increasing n^{ped}



- Different pedestal behavior expected depending on the limiting instability:
 - oballooning instabilities:
 - $\triangleright p^{ped}$ decreases with increasing n^{ped}

opeeling instabilities:

 $ightharpoonup p^{ped}$ increases with increasing n^{ped}

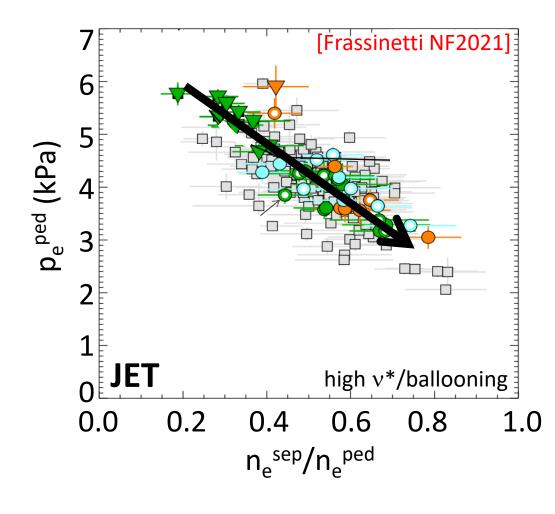

 Different pedestal behavior expected depending on the limiting instability:

oballooning instabilities:

- $ightharpoonup p^{ped}$ decreases with increasing n^{ped}
- p^{ped} decraeses with increasing n^{sep}/n^{ped}

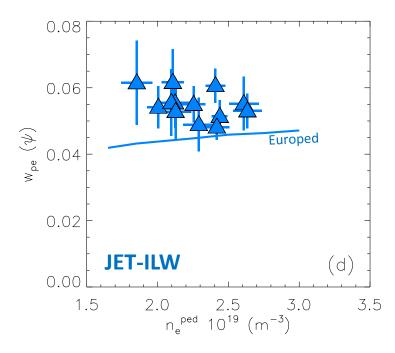
opeeling instabilities:

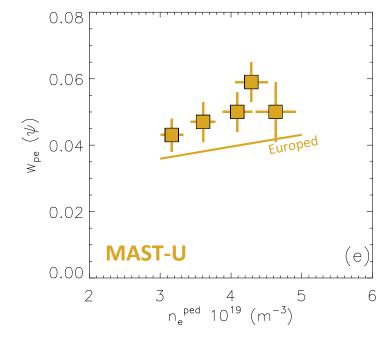
- $ightharpoonup p^{ped}$ increases with increasing n^{ped}
- $> p^{ped}$ versus n^{sep}/n^{ped} ?

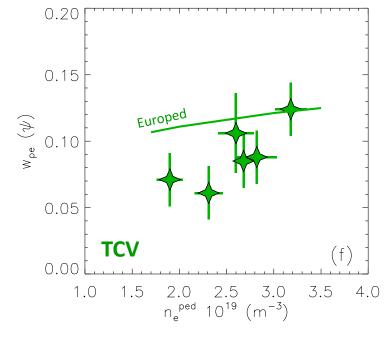

 Different pedestal behavior expected depending on the limiting instability:

oballooning instabilities:

- $ightharpoonup p^{ped}$ decreases with increasing n^{ped}
- p^{ped} decraeses with increasing n^{sep}/n^{ped}


opeeling instabilities:


- $ightharpoonup p^{ped}$ increases with increasing n^{ped}
- $> p^{ped}$ versus n^{sep}/n^{ped} ?



Different mechanisms explain the increase in p_e^{ped}

JET-ILW:

The increase in p_e^{ped} is due to:

- the increase in the gradient
 - effect due to the stabilization of peeling modes
- NOT an increase in the pedestal width

MAST-U:

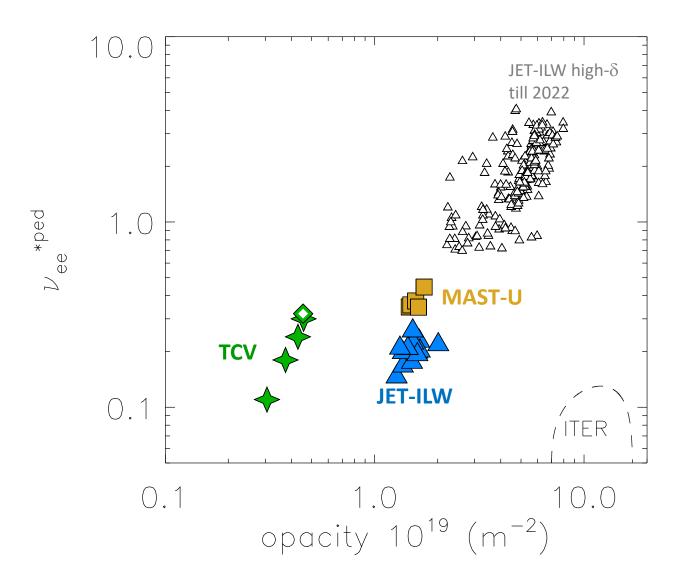
The increase in p_e^{ped} is due to:

- the increase in the gradient
 - effect due to the stabilization of peeling modes
- o the increase in the pedestal width

TCV:

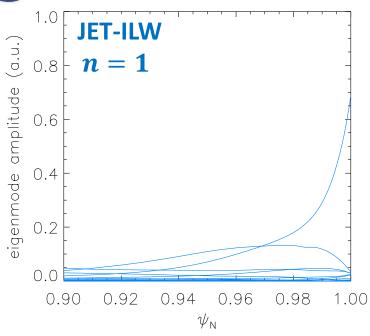
The increase in p_e^{ped} is due to:

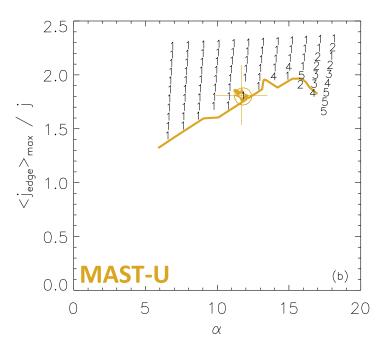
- NOT the increase in the gradient
 - effect NOT due to the stabilization
- the increase in the pedestal width

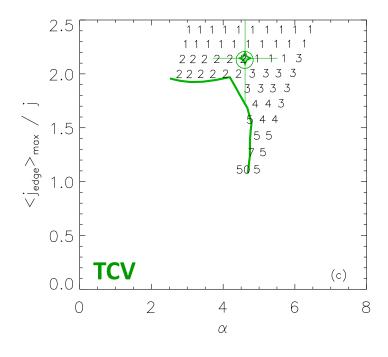


Opacity

Opacity defined as in [Mordijc NF2020]:


$$\frac{\left(n_e^{ped} + n_e^{sep}\right)}{2} \times a$$


 The TCV dataset has opacity much lower than JET-ILW and MAST-U, mainly due to the lower size



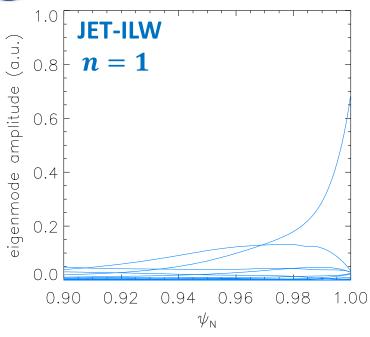
PEELING LIMITED PEDESTALS REACHED IN JET-ILW, MAST-U AND TCV

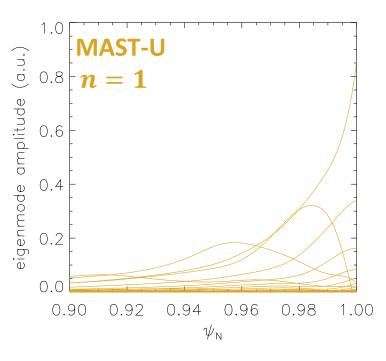
JET-ILW:

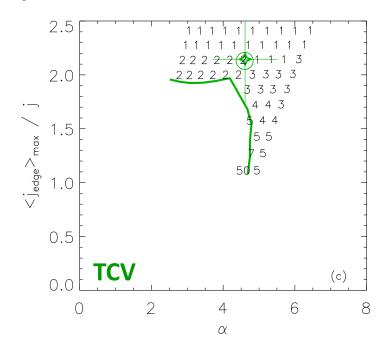
- o Pedestal:
 - near the peeling boundary
 - ➤ limited by low-*n* modes
- Clear dominant peeling component

MAST-U:

- Pedestal:
 - > at the peeling boundary
 - ➤ limited by low-*n* modes


TCV:


- Pedestal:
 - at the corner
 - \triangleright limited by low-n modes



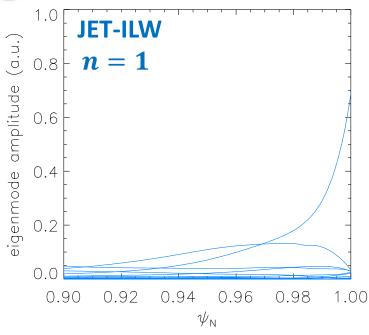
PEELING LIMITED PEDESTALS REACHED IN JET-ILW, MAST-U AND TCV

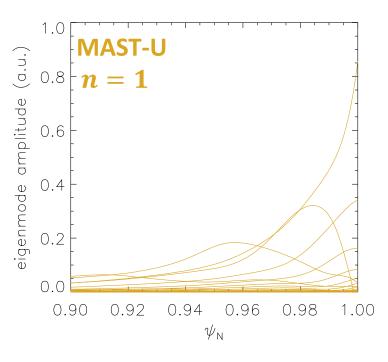
JET-ILW:

- o Pedestal:
 - near the peeling boundary
 - \triangleright limited by low-n modes
- Clear dominant peeling component

MAST-U:

- Pedestal:
 - > at the peeling boundary
 - ➢ limited by low-n modes
- Clear dominant peeling component


TCV:


- Pedestal:
 - at the corner
 - \triangleright limited by low-n modes

PEELING LIMITED PEDESTALS REACHED IN JET-ILW, MAST-U AND TCV

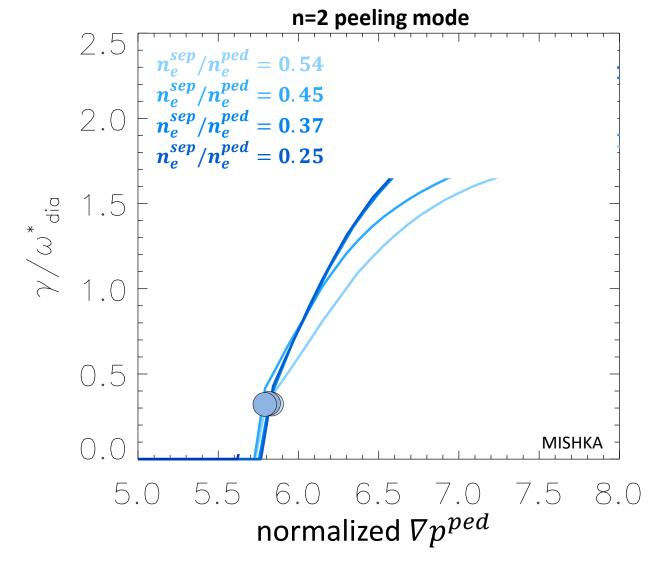
JET-ILW:

- o Pedestal:
 - near the peeling boundary
 - ➤ limited by low-*n* modes
- Clear dominant peeling component

MAST-U:

- Pedestal:
 - > at the peeling boundary
 - ➤ limited by low-*n* modes
- Clear dominant peeling component

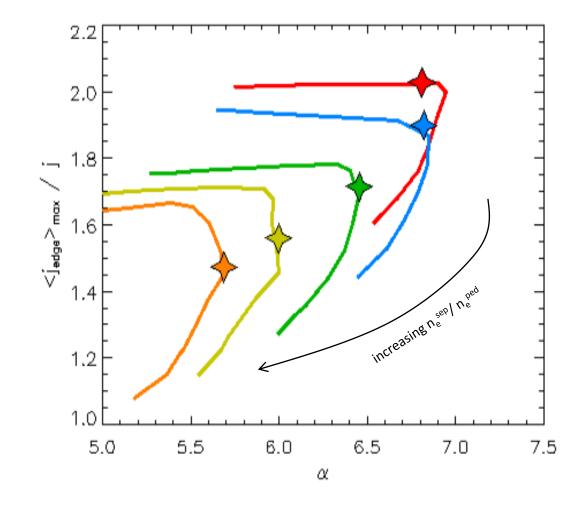
TCV:


- Pedestal:
 - at the corner
 - \triangleright limited by low-n modes
- Clear dominant peeling component

Increasing n_e^{sep}/n_e^{ped} has minor effects on peeling mode stability

- Zero-order explanation:
 - The increase of n_e^{sep}/n_e^{ped} does not have a major effect on peeling modes [Frassinetti NF2025]
 - \rightarrow No variation is expected in ∇p^{ped}

A more accurate explanation can be found in [Frassinetti NF2025]

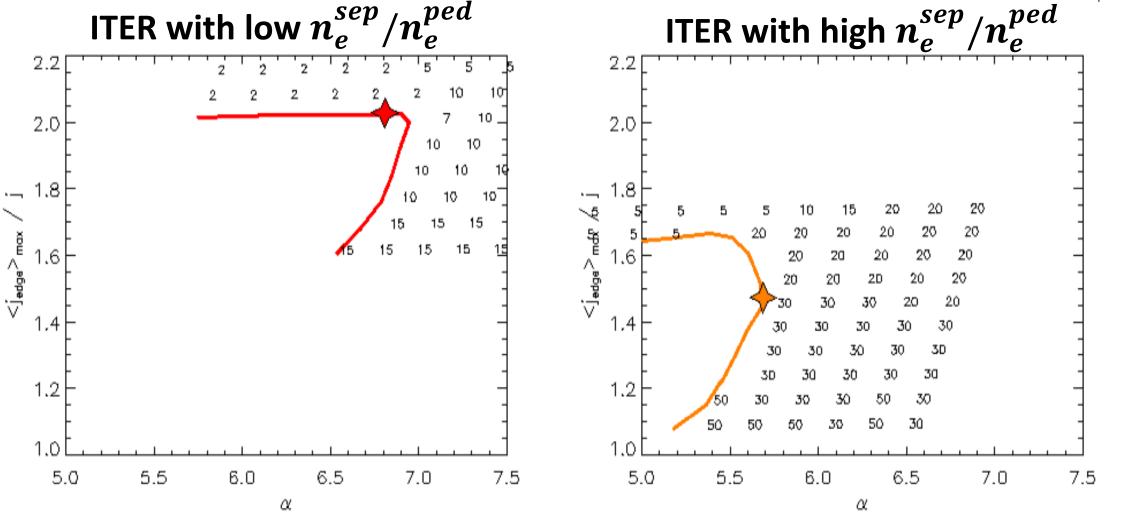


ITER Peeling ballooning stability in the n_e^{sep}/n_e^{ped} scan

- lp=15MA
- Bt=5.4T
- 0 -2 03
- n_e^{ped}=12x10¹⁹ (m⁻³)
- n_e^{core}=13.9x10¹⁹ (m⁻³)
- T_i=T_eOld shape

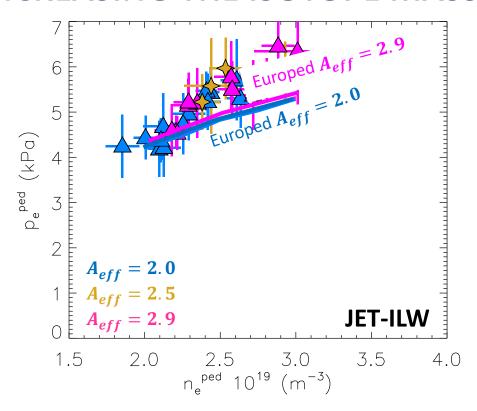
- Starting point:
 - o predicted Europed profiles from a n_e^{sep}/n_e^{ped} scan
- Using HELENA+MISHKA, the 2D pedestal stability digram has been created for the predicted profiles
- The increase of n_e^{sep}/n_e^{ped} scan destabilizes the ballooning modes [Dunne PPCF2017, Frassinetti NF2021]
- The ITER pedestal is near the transition from peeling to ballooning → the destabilization of ballooning modes moves the pedestal to the ballooning boundary

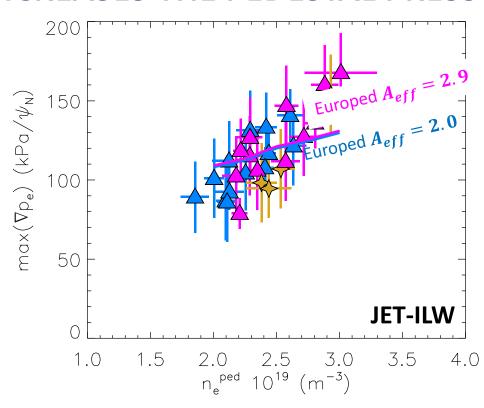
ITER Peeling ballooning stability in the n_e^{sep}/n_e^{ped} scan


■ Bt=5.4T

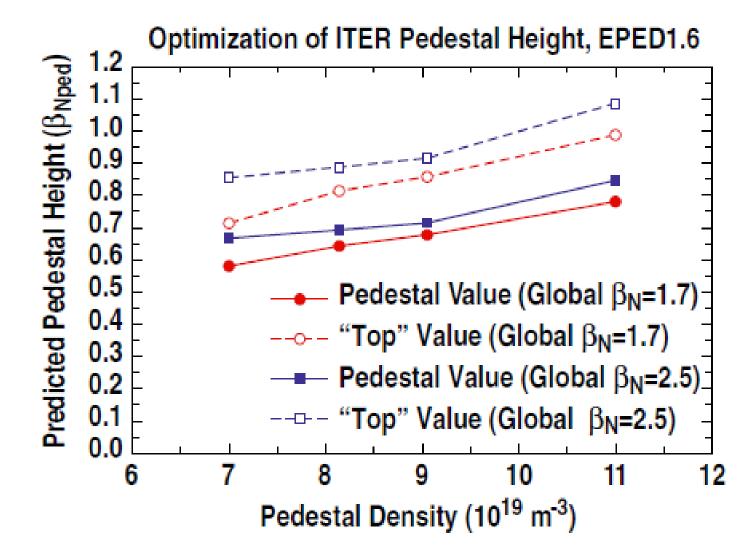
 $\beta_{\rm N} = 2.03$

n_e^{ped}=12x10¹⁹ (m⁻³)
 n_e^{core}=13.9x10¹⁹ (m⁻³)

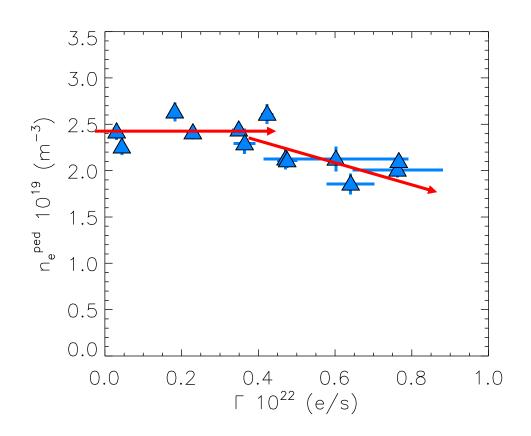

n_ecore=1 T_i=T_e

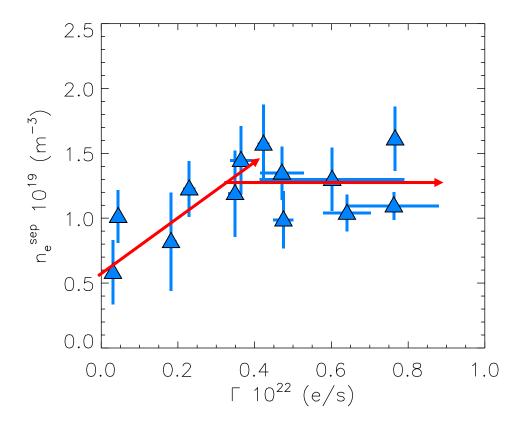

Old shape

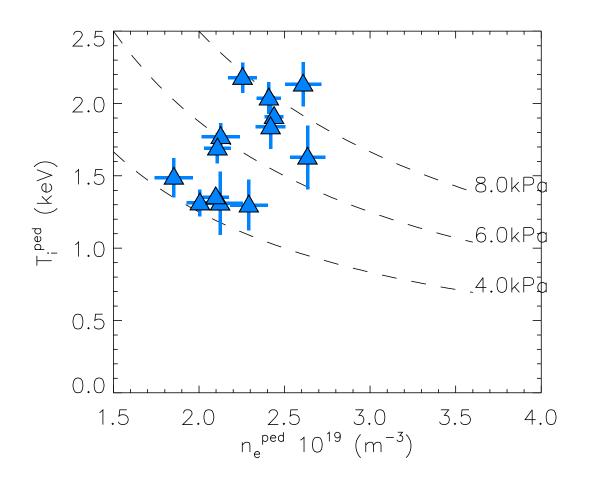
INCREASING THE ISOTOPE MASS INCREASES THE PEDESTAL PRESSURE

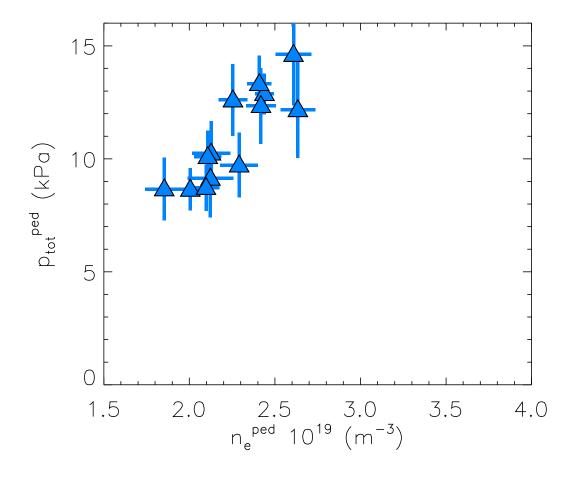


- The improvement is due to an increase in $abla p_e^{ped}$ (no major effect on the width)
- Pedestal predictions with Europed:
 - Good qualitative agreement
 - No direct effect of the isotope mass on the pedestal stability
 - Improvement due to the stabilizing effect of the increased density on peeling modes









- Low v_{ee}^{*ped} /peeling limited pedestals reached both in metal wall and carbon wall machines
- In peeling limited pedestals:
 - $\circ p^{ped}$ increases with increasing n_e^{ped} (degradation observed in ballooning limited)
 - $\circ p^{ped}$ does not degrade with increasing n_e^{sep}/n_e^{ped} (degradation observed in ballooning limited)
 - \circ p^{ped} increases with increasing isotope mass (similar to ballooning limited, but partially different mechanism)
 - → Very positive information for ITER (assuming type I ELMy H-modes)
- Reasonable Europed predictions in the ITER range of v_{ee}^{*ped} , ρ_i^{*ped} , n_e^{sep}/n_e^{ped}
- ITER pedestal predictions:
 - \circ transition peeling vs ballooning strongly sensitive on the density (and B_t , not shown here)
 - Ballooning pedestal recently predicted also in [Luda NF2025]
 - No pedestal degradation expected despite a possible transition to ballooning limited plasmas
- The work increases the relevance for ITER of small/ELMs regimes [Giroud IAEA2025, Dunne IAEA2025] which have been achieved in ballooning limited regimes

