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Internal Transport Barrier in JET-ILW

Strong ITB at mid-radius 

in both i- and e- channel

Kinetic profiles:

• ne: HRTS, profile reflectometer

• Te: ECE, HRTS

• Ti, vtor: CXRS (Ne X and main ion)

JET Pulse #96852 (D)

ne Te

Ti

tor

Be

W

(*) In JET-C, ‘strong ITB’ was defined as ITB with *Ti  > 1.5 x *ITB 

[Tresset, NF 2002], [Challis, PPCF 2004]
(*Ti = s/LTi)
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Scenario with ITB in JET-ILW

Target plasma for observation of TAEs 

destabilized by ’s

• BT / IP,max = 3.43T / 2.8MA (q95 ~ 3.8)

• NBI heating only

• NBI during IP ramp-up to slow down 

current profile diffusion and achieve low, 

positive magnetic shear

• Low plasma density (low recycling)

• Transient plasma

[Fitzgerald, NF 2023]

[Gormezano, PRL 1998], [Challis PPCF 2001], [Joffrin NF 2002]

JET Pulse #99946 (50-50 D-T)

Neutron rate (1018/s)

Te(0)

Ti(√N=0.2)

ne

AfterglowD-T NBI Prad

ITB

phase

Plasma current

TRANSP-tot
Measured

B-T TH
B-B

Time (s)
6.0                     6.5                     7.0

(1
0

7
 W

)
(M

A
)

(1
0

1
9
 m

-3
)

(1
0

4
 e

V
)



CF Maggi | IAEA FEC 2025 | 18/10/2025 5

Motivation: easier ITB onset and stronger ITB in T

• Easier ITB access & higher Ti & tor in T

• at lowest NBI power

• at lowest plasma density

→ need to decouple isotope mass and 

density effects on ITB trigger and strength

• Best performance ITB pulses are at 

different NBI powers in D, T, D-T:

    31 MW (D) > 26 MW (D-T) > 23 MW (T) 

Data mining (experiments not run to address isotope dependence of ITB)
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Core ion heat transport more strongly reduced in T

Ion ITB foot at larger radius in T than in D at 

fully developed ITB

• i(T) drops to NC level (TRANSP+NCLASS) 

for 0.3 < tor < 0.6 in fully developed ITB

• Larger i drop for T shot, and over broader 

plasma volume, than in D
(Time of ‘strong ITB’ = 50 ms before NBI switch-off)
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Scenario with ITB in JET-ILW – with pacing pellets

→ Transition to phase with small / high 

frequency ELMs

• Decrease in edge ne and Te

• type I ELMs → (likely) type III ELMs (*)

• Pellets no longer trigger ELMs

• ITB forms and grows in this phase (cause -

effect still unclear)

• Similar picture in D and D-T

• HFS pellet pacing to mitigate type I ELMs 

for W control (2mm, 45 Hz, D pellets)

(*) ITB not compatible with type I ELMy pedestal – reported in many tokamaks 

[Chapman, PPCF 2015]

JET Pulse #99946 (50-50 D-T)
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T plasmas in type III ELMy regime, low ne branch

• H pellets (no T pellets in JET)

• No pellet triggered ELMs

• After L-H transition, plasma always in type III 

ELMy regime (weak density increase) 

• After max value, Psep decreases in time

• → plasma ‘deeper’ in type III ELMy regime 

• Edge ne strongly decreases

• ITB forms and grows in this phase

density
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Psep

[Delabie, APS 2016]
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In phases with type III ELMs, ne,PED decreases from D to T

• Low recycling conditions: 

pedestal density decreases 

from D to T  (decrease in Δne)

• Unlike pedestals with type I 

ELMy H-modes: ne,PED increases 

from D to T

2.8MA/3.43T – PNBI: 23.5 – 26.5 MW

mtanh fits to HRTS data

[ELM sync analysis] 

[ELM averaged 

profiles (100 ms)] [Frassinetti, NF 2023]
[Schneider, NF 2023]

• Trend consistent with strong contribution of neutral 

fuelling in setting the pedestal density structure in 

low recycling conditions: n0 ~ 1/√A

In low-ne plasmas with ITB, T plasmas evolve to lower pedestal density
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Known physics affecting ITB onset and strength

Stabilization of dominant core turbulence (ITG) by

• Magnetic shear ŝ = r/q dq/dr  

• ExB shear  ExB = | RB/B ∂/∂r (Er/RB) |  (*)    

• Ti / Te   

• Fast ions (dilution and pressure)   - moderate effect

• Thermal EM effects     - negligible impact of isotope mass 

 How are they influenced by changes in density and in isotope mass ? 

[Hahm and Burrell, PoP 1995], [Ernst, PRL 1998] 
[Tala,  PPCF 2001] 

[Gormezano, PRL 1998], [Challis PPCF 2001], [Joffrin NF 2002]
[Volčokas, NF 2023]

[Brioschi,  NF 2025] 

(*)

[Tardini, NF 2007] 

Pe-i ~  Z2/mi (neni/Te
1.5) (Te – Ti) 



CF Maggi | IAEA FEC 2025 | 18/10/2025 11

ITB near location of plasma q = 2 surface

• Bespoke EFIT equilibrium with TRANSP pressure 

constraints, consistent with MHD markers and 

polarimetry

• ITB foot located near q = 2 surface 

• For D, T and D-T

• Elevated q0 >1 (exact value unknown)ne

Ti

q
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Density scan strongly affects Ti and ITB strength

• Density scan in early phase of hybrid scenario, 

with performance overshoot generating high Ti 

and ITB

• Density varied at H-mode entry

• variation of gas level/timing

• 8 pulses (4 shown here)

• Strongly affects core and edge Ti

[King, subm PPCF]
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Increase in Ti, tor correlated with decrease in density

• Increase in Ti , tor and ITB strength correlated with decrease in plasma density

• Higher tor at lower density → expect stronger ExB shear stabilization of core turbulence
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n=1 mode appears at same time regardless of density

• n = 1 MHD mode appears at same time in 

all 8 pulses, regardless of density

• Magnetic island, rotating with similar 

frequency fMHD ~ 10-15 kHz in all 8 pulses

Mirnov pick-up coils
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ŝ largely independent of plasma density 

variations in phase leading to ITB 

→ Favourable q-profile with low, ŝ > 0 and q = 2 surface necessary for ITB onset, but not 

sufficient condition for strong ITB

• Islands form where magnetic tension vanishes 

•                         , with m, n integers

• When n = 1, q must also be integer for k|| to 

vanish

• fMHD ~ n ftor at Rmag ~ 3.6m

• Coincides with location of q = 2 surface and 

ITB foot

• → q-profile very similar in all 8 pulses in early 

phase of discharge

tor

Ti

Te

Density scan doesn’t affect q-profile in early phase of 

hybrid scenario with performance overshoot 
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ITG is dominant micro-instability in core plasma

CGYRO linear simulations (tor = 0.43)

• Before and during ITB; at tor = 0.4, 0.55 and 0.7; both for D and T

• Confirmed by scans in a/LTe, a/LTi and a/Lne 

• Isotope mass dependence in line with g-B dependence of ITG turbulence ~ 1/√A

• Confirmed stabilization of core ITG modes with decreasing ŝ

ion+

e-

( unit = sqrt(mD*Te)/(e*B) )

• ITG dominant 

modes at ion scale

• electrostatic ETG 

mode at e- scale
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Stronger Ti/Te stabilization of ITG modes in tritium 

CGYRO linear simulations (Ti/Te scans at kyi = 0.3)

• Stronger Ti/Te stabilization of core ITG turbulence in T during ITB phase 

• T case: less e-i coupling 

with higher mi and with  

lower ne (TRANSP)

• Higher Ti / Te at ITB onset 

and at fully developed ITB 

in T than in D pulse 

tor = 0.43

tor = 0.47

Pe-i ~  Z2/mi (neni/Te
1.5) (Te – Ti) 
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ITG heat transport decreases with isotope mass
Major role played by ExB shearing 

in regulating ITG turbulence

• Variations in E and M encompass 

experimental ranges: 

• Mach ~ 0.5 - 0.8

• E ~ 0.1 - 0.2

• Scan in ExB shear and Mach-

number for GA-standard case

• Similar gradients to JET-ILW 

shots at ITB onset:

• a/Ln ~ 1 , a/LT ~ 3

E = ExB / (cs,D/a)

• Stronger decrease in core heat transport for T

• Sizeable Mach-numbers in experiment exacerbate isotope dependence of ITB onset 

and strength [Camenen, PoP 2016]

CGYRO – NL simulations
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Core W transport in JET-ILW scenario with ITB 

[Chen, NF 2001], [Dux, NF 2004]

[Angioni, NF 2025]For impact of W transport on H-mode plasmas, see recent review: 

• Core impurity accumulation in plasmas with ITB in JET-C

• Dominant NC impurity transport inside ITB (where turbulent transport is stabilized)

• Impurity peaking increasing with impurity charge (C, Ne, Ni) 

• Core impurity accumulation due to inward particle pinch inside ITB 

• JET-ILW ITB scenario:

• Predictive NC transport modelling (NEO)

• with 2 non trace impurities (Be and Ni) + W as trace impurity

• impurity-impurity collisions important in these conditions

• Strong ni peaking (low collisionality, NBI), strong vtor

NC diffusion NC convection

screening 
parameter 

𝐶𝑇𝑆 = −
𝐻𝑍

𝐾𝑍
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Progressive core W accumulation in phase with ITB 

• Outward convection 𝑉𝑊 weakens after ITB is formed − 
𝑛𝑖′ effects on NC transport are stronger than 𝑇𝑖′ 

• Core W accumulation expected in fully developed ITB 

phase (but note low Prad, high fELM of T pulses)

• On-going: sensitivity of NEO predictions to Lni and LTi 

JET Pulse #99206 (T)

NEO

LFS

Predicted W emissivity (NEO) vs

Bolometry tomography (total radiation)

𝑉𝑁𝐶 ∝ 𝐶𝑇𝑆
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Conclusions

• Strong ITBs achieved in JET-ILW in scenario with NBI only in D, T and D-T, with positive, 

low magnetic shear  and type III ELMy edge

• Scenario designed and executed for physics studies (transient, low density)

• Easier ITB onset and stronger ITB in T (at lower PNBI), favoured by multiple effects:

• optimal entry to H-mode with type III ELMs (plasma at low density from the start)

• ne,PED decreasing with Aeff in low recycling conditions → higher core toroidal rotation

• stabilization of core ITGs by Ti/Te increasing with Aeff and with decreasing ne

• larger decrease in core heat transport due to ExB shear stabilization of core ITGs for 

higher Aeff and Mach (lower ne) 

• Core W impurity accumulation predicted (NEO) in fully developed ITB, due to NC inward 

convection inside ITB

• sizeable Be and Ni concentrations → impurity – impurity collisions important (NEO)
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