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Basic idea of a QA device

Stellarator Tokamak
* No inductive plasma current  Requiring plasma current
— Steady-state operation capability — Major disruption, pulse operation
- Large neoclassical transport by ripple * Reduced neoclassical transport and good
diffusion particle orbit by axisymmetry

w Both advantages
: are combined

Quasi-axisymmetry




Optimization strategy of CFQS

The Chinese First Quasi-axisymmetric Stellarator (CFQS):
B Jointly designed by SWJTU (China) and NIFS (Japan), and constructed by SWIJTU.

B Main purpose is to verify the advantage of quasi-axisymmetric stellarator in reducing neoclassical transport for the
first time in the world.

Major properties Perspective improvement
Quasi-axisymmetric configuration Reducing neoclassical transport
Magnetic well Good MHD stability
Low aspect ratio Large plasma volume

Low toroidal viscosity

el (waAd i) Suppressing anomalous transport by sheared flows

Y. Xu, H. F. Liu, A. Shimizu, M. Isobe, S. Okamura, S. Kinoshita et al., 27" IAEA(2018), EX/p5-23.
M. Isobe et al., 45th EPS Conference on Plasma Physics, P2.1043 (2018). 4



Schematic of the CFQS device

Heating powe

CFQS main body

Power system

® Major radius: R=1.0m,
J. Cheng et al., PPCF 67 (2025) 105011 ] ]
Y. Xu, Stellarator News, 170 (2020) ® Averaged minor radius: <a>=0.25m

H.F Liuetal, PFR 13 (2018) 3405067 ® Magneticfield: B, =1.0T
A. Shimizu et al., PFR 13 (2018) 3403123 ® Toroidal periodic number: N =2



Configuration characteristics of CFQS
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Mercier instability in CFQS
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Suppression of islands by density control

I . Influence of density profile on the BSC and equilibrium
1slands
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Hybrid ITG-TEM simulations in CFQS

J. Huang et. al., PoP 29 (2022) 052505 .
. . . . . - - — 1.4
2 == Ru.r'LT=4
—R /L =8 11.2
— R,/L=10 ,
—=R /L =12| == .
1.5 {77 RM™12) e el 7

0.5 1 1.5 2 2.5 -10 2 4 6 8 10 12

K p. R,/L.
o 11 h h f th
The growth rates of the hybrid ITG-TEM modes The stab111.ty contour map of the growth rates of the
k. p; for various Ry /Ly at Ry/L, = 2 electrostatic hybrid ITG-TEM modes vs. Ry/L,, and
Y- FyPr TOT VATIONS Fof S 22 Ho/fm = & Ro/Ly, for Ry/Ly, = 8 and kyp; = 1.

€ Inthe low k, p; region, the dominant mode is ITG and in the high k, p; region, the dominant mode is TEM.

€ The TEM is the dominant mode when R,/Lr, is small. As Ry/Ly, increases, the dominant mode is
transited into ITG mode. It is found that a stability-valley-like structure appears in the stability map for the

ion-scale modes.



Nonlinear ITG turbulence simulations in CFQS

ITG-driven turbulence Zonal-flow

Q; —turbulent ion thermal flux
Qg — heoclassical gyro Bohm thermal flux
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Equivalent circular tokamak with the same g, s and A, M. Nakata et al., 27th ITC(2018), O-1

The nonlinear turbulent heat flux in CFQS is comparable or less than that in the Equivalent Tokamak.

Enhanced zonal-flow generation is found in CFQS, indicating remarkable impacts of the quasi-
axisymmetry on the nonlinear interactions.



Modular coils (copper conducts) of CFQS

61 434 KA* 72 =312.5 kA
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» The modular coil system consists of four pairs of coils (M1, M2, M3, M4) with four different shapes;
» The area of cross section for each coil is 132mm x 69mm;

» There are 6x12 hollow copper conductors in each coil; (4.34 KA* 72 =312.5 kA)

» Copper conductor (8.5 mmx 8.5 mm) with a hollow for the water cooling channel.

11



Vacuum vessel design of CFQS

Thomson
Scattering

8 leaf spring
type legs

VS S
o, |

12 winding cores for the TFC

Large NBI port,
also be used for
entering into the
_vacuum vessel |

S. Kinoshita et al., PFR 14 (2019) 3405097
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CFQS research plan

€ 0.1 T operation
» ECH: P~ 20 kW, f=2.45GHz

for testing of accuracy of a QA magnetic topology

€ 1.0 T operation
» ECH: P~450 kW, f=54.5 GHz
> NBI (H): P~1.0 MW, E < 40 keV

Delve into plasma properties with high plasma parameters
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Laboratory of CFQS-T in JiuLi campus
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Schematics in TianFu New Zone
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Fabrication of mock up coil (MC4)

finished
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mockup coil 4
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Bottom surface Inner plate surface Outer plate surface
(-0.17~+0.07mm) (-0.21~+0.19mm) (-0.19~+0.29mm)
® The mockup coil: winding, modify mould and VPI;
® Dimension measurement by laser tracker, meet the design;
® Start to manufacture the other MC coils.
Maximum error of the mock up coil <1.0 mm !
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Manufactured modular coils (4 types)

® Totally 16 modular coils has been winded (4-MC1, 4-MC2, 4-MC3, 4-MC4);

® Compared with 3D model, deviation is within 1.2 mm, which is acceptable range;
® Two times VPI of 16 coils has been finished at the end of March, 2024;

® The insulation and heat test has been finished at the end of May, 2024.




Manufacture of Vacuum Vessel

WV TYPE R4 H

® Vacuum vessel : two type A and
| | two type B; 6 mm stainless steel plates;
.| ® Type A: four pieces, type B: seven
pieces; all the pieces for type A/B was
} | formed by hot pressing method, and
- [the max. deviation of each pieces is
about 5 mm ;

® Two type A/B VV has been
welded, the maximum deviation i1s
about 5 mm.




Assembly flow chart of the CFQS device

Assembly order:

® Basic platform assembly (PFC and bottom platform);

® MC-Vacuum chamber and the related support structure (required high accuracy);
® Top platform (PFC upper), outer pillars .
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Assembling process

First MC 1nstalled on basic platform

Installation of MCs one by one

e (4, W

2024.3.9 2024.4.29 §

| Installation of water pipes

2024.6.26 2024.7.1
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CFQS-T ready for experiment

22
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Mapping system for magnetic field

The elect
CFQS mapping system © erecion sun

It is mainly used to measure the three-dimensional magnetic field
topology generated by the coil system and verify the accuracy of the !




2D

3D

Validation of QA configuration

1 The elect
- nested magnetic surface (1) The ? ec réfj gun

.

- MC current: 434A/turn (0.1T)
- vacuum degree: ~ 5x10-> Pa
- electron energy: 40eV

- At~ 25s

p~0.489 p~0.740
m/n=8/3 m/n=11/4

- MC current: 434A/turn - vacuum condition: ~ 3x10*Pa - injected argon gas



Error analysis of the magnetic topology
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Comparison between CHS and CFQS-T

CHS (NIFS, Japan):
ECRH ~ 10 kW, 2.45 GHz
B,~0.061 T, H plasma.
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CFQS-T (SWJTU, China):
ECRH ~ 9 kW, 2.45 GHz.
Bt~ 0.069 T, H plasma.
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Suppression of neoclassical flux in CFQS-T
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First observation of zonal flows in CFQS-T

f (kHz)

Experimental parameters: H, discharge, Pgr-y=3kW

shot: 95047
(a)

f (kHz)

2F .
E [(d) | e
7 C bl *] N
I@ IE X. Chen, J. Cheng, Y. Xu et al., to be submitted to PRL
= » Low frequency zonal flow (LFZF) is spontaneously generated via

3000 3500 4000 4500 5000 5500 6000 6500 three-wave nonlinear interaction;
t (ms) » Plasma confinement is improved by LFZF.
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Summary

€ CFQS Physics and Engineering Design Completed
€ CFQS Construction Progresses Smoothly
€& CFQS-T Has Achieved Preliminary Experimental

Results...



Thanks for your attention!



Optimization of stellarator configuration

1950 1960 1970 1980 1990 2000 2010 2020
Classical Heliotron/Torsatron @
High shear
LHD Built-in divertor

Heliotron A, iotron C

Optimized Stellarator/Heliotron

LIS

Heliotron B HIitr ;Tiotron DR @
Helias _
Classical Stellarator o |
Low shear

Magnetic well

Heliac

High beta
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Motivation of the joint CFQS project

The Chinese First Quasi-axisymmetric Stellarator (CFQS):
B Jointly designed by SWJTU (China) and NIFS (Japan), and constructed by SWITU.

B Main purpose is to verify the advantage of quasi-axisymmetric stellarator in reducing neoclassical transport for
the first time in the world.

Blanket Plasma ?:2%",?;1:
Tokamak (with 1) Stellarator (without |)
B Simple configuration B Steady-state operation
B low neoclassical transport B less MHD, no major disruption
B Less freedom degrees B Technical complexity
B More MHDs, Major disruption B high neoclassical transport 34
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First observation of zonal flows

50 CFQS-T shot: 95047
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X. Chen, J. Cheng, Y. Xu et al., to be submitted to PRL

Experimental parameters: H, discharge, Pgcy=3kW;

Low frequency zonal flow (LFZF) is spontaneously generated via three-
wave nonlinear interaction;

The result clearly demonstrates that LFZF could modulate turbulence (5-30
kHz), consistent with theoretically-predicated predator-prey model;

The turbulence suppression by LFZF 1s found to facilitate the steep of edge

electron pressure profile. .



Backup

#91578

Plasma imaging obtained by CCD
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