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Goal: assess the ability of simulation codes to predict W erosion and transport
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● Plasma: Ne-seeded JET ITER-baseline scenario #97490 (see C. Giroud et al. this conference)
● Given a set of background plasma profiles, predict W

● SOLEDGE3X wide-grid plasma background solution including drifts
Compared with SOLEDGE2D, no drifts

● EIRENE modelling of energy- and angle-resolved atomic flux at walls

● ERO2.0 simulations for W erosion and edge transport

● Validation of simulated W erosion (ERO2.0):
Predicted vs. measured W I line emission (400.9 nm) in the divertor

● Validation of simulated W edge and core transport (ERO2.0 & JINTRAC): 
Predicted vs. measured W density in the core, JINTRAC boundary condition for W taken from ERO2.0
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Plasma profiles from SOLEDGE3X with drifts (P. Innocente)
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Atomic wall fluxes from EIRENE
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● Need more detailed data on atomic flux and the impact energy & angle distributions 
than what is available from the coupled SOLEDGE3X-EIRENE simulation

→ EIRENE post-processing simulation on converged SOLEDGE3X solution

● Particle histories increased by factor 100

● Added diagnostic surfaces for tallying bivariate energy-angular distributions [1]
at the most important wall locations

[1] H.A. Kumpulainen et al. PPCF 2025
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Atomic wall fluxes from EIRENE
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Atomic wall fluxes from EIRENE
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#97490 
#97781 

W sputtering 
threshold

#97490: ne,LCFS = 2.7 · 10-19 m-3, P = 34 MW
Denser SOL → energetic CXN flux attenuated
#97781:  ne,LCFS = 1.9 · 10-19 m-3, P = 34 MW
More energetic CXN from the pedestal 
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W erosion and transport predicted by ERO2.0

● ERO2.0 trace-impurity Monte Carlo simulation with a 3D wall

● Cross-field W transport coefficients: 
● Neoclassical D⟂, V⟂ profiles from NEO (D. Fajardo)
● Anomalous D⟂ profile based on SOLEDGE3X (P. Innocente)

● Electromagnetic drifts included (ExB, grad-B, curvature etc.)

● Fokker-Planck collisions and thermal forces included

● Plasma toroidal rotation included

● Charge-state resolved Ne density profiles from SOLEDGE3X 
→ wall fluxes and meff, Zeff profiles

● Adaptive GCA: full-orbit resolution near walls (prompt redeposition), 
guiding-center tracking elsewhere
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W erosion and transport predicted by ERO2.0

Inward neoclassical pinch ( n∇ i)
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W erosion and transport predicted by ERO2.0

Inward neoclassical pinch ( n∇ i)

Inward diffusion ( n∇ W)

Outward diffusion ( n∇ W)
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Inward neoclassical pinch ( n∇ i)

Inward diffusion ( n∇ W)

Outward diffusion ( n∇ W)

Parallel-B friction (vpar)

Centrifugal effect (rotation)

W erosion and transport predicted by ERO2.0
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Excellent screening of W sources in the divertor
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● ERO2.0 simulation study:
erosion replaced by W point sources
at different wall locations

● Both strike lines fully screened due to 
friction with main ion flow

● Weakest W screening above the 
divertor shoulders, esp. on the LFS
(low ne & Te, long W0 mean free path)

● Placing the W source at the mid-plane 
separatrix causes factor of > 2000 higher 
core W density than the divertor locations

HFS 
shoulder

LFS 
shoulder top

HFS 
mid-SOL

HFS 
strike line

LFS 
strike line

LFS 
shoulder
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Validation of ERO2.0 W erosion sources (W I emission)
● ERO2.0 calculates emission profiles and synthetic spectrometer data from neutral W trajectories

● Spectrometer view of LFS strike point obstructed by divertor shoulder → measured W I light mostly reflections

LOS-integrated W I emission, no photon reflections in ERO2.0
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W I line emission, 400.9 nm, ERO2.0
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Validation of ERO2.0 W erosion sources (W I emission)
● ERO2.0 calculates emission profiles and synthetic spectrometer data from neutral W trajectories

● Spectrometer view of LFS strike point obstructed by divertor shoulder → measured W I light mostly reflections

● Surface reflections included by photon mapping volumetric W I emission → code-experiment agreement

W I line emission, 400.9 nm, ERO2.0 LOS-integrated W I emission, photon reflections included

Assumed 400.9 nm reflectance at W surfaces: 0.4 +/- 0.2
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Validation of ERO2.0 + JINTRAC W transport
● JINTRAC core transport (JETTO) with Ne, Ni, W impurities (SANCO)

● Boundary condition for W to match ERO2.0 W density at the pedestal top

● ne, Te, Ti profiles and Ne, Ni concentrations fitted to experiment, W predicted

● Heating, radiation, current, rotation, fuelling prescribed

● Neoclassical transport (NEO / NCLASS)

● Turbulent transport (QLK-NN + ad-hoc Bohm-gyro-Bohm to match ne, Te, Ti)

Tine Te
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Validation of ERO2.0 + JINTRAC W transport
● JINTRAC core transport (JETTO) with Ne, Ni, W impurities (SANCO)

● Boundary condition for W to match ERO2.0 W density at the pedestal top

● ne, Te, Ti profiles and Ne, Ni concentrations fitted to experiment, W predicted

● Heating, radiation, current, rotation, fuelling prescribed

● Neoclassical transport (NEO / NCLASS)

● Turbulent transport (QLK-NN + ad-hoc Bohm-gyro-Bohm to match ne, Te, Ti)

● W density profile more accurate with a SOLEDGE3X background (drifts)
than with SOLEDGE2D (no drifts)

● W transport very sensitive to plasma profiles → uncertainty > factor of 3

W density profile, flux-surface averaged
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Conclusions

● First application of ERO2.0 + JINTRAC W erosion and transport workflow to JET Ne-seeded ELM-free H-mode 
→ W I line emission and core W density predicted within a factor of ~3

● Including photon reflections is necessary to match W I emission if coverage of main W erosion source is obstructed

● Analysis of experiments and simulations reveals effective W accumulation control strategies:

● Excellent divertor screening of W sputtered by Ne ions (main ion flow)

● Wide high-density SOL → CXN attenuation → reduced W erosion by atoms 

● No W flushing by type-I ELMs required

● W screening in the SOL vs. main plasma: contrast with JET hybrid scenario
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Backup slides
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Backup slides
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SOLEDGE2D, no drifts (semi-detached) SOLEDGE3X, drifts (attached)

Assumptions: 
0.5% Be2+

Same Ne flux and charge in both cases

W sputtering rate by projectile species
ERO2.0
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Backup slides
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— Drifts
- - No drifts
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Backup slides
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Validation of ERO2.0 W erosion sources (W I emission)
● ERO2.0 calculates emission profiles and synthetic spectrometer data from neutral W trajectories

● Spectrometer view of LFS strike point obstructed by divertor shoulder → measured W I light mostly reflections

W I line emission, 400.9 nm, ERO2.0 LOS-integrated W I emission, no photon reflections in ERO2.0

Henri Kumpulainen | IAEA-FEC | 17 Oct 2025



23

Validation of ERO2.0 W erosion sources (W I emission)
● ERO2.0 calculates emission profiles and synthetic spectrometer data from neutral W trajectories

● Spectrometer view of LFS strike point obstructed by divertor shoulder → measured W I light mostly reflections

W I line emission, 400.9 nm, ERO2.0 LOS-integrated W I emission, no photon reflections in ERO2.0

Henri Kumpulainen | IAEA-FEC | 17 Oct 2025



24
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Backup slides
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Contributions to W gross erosion:

Ne, Be, D ions: 87% (1.5*1020/s)
W ions: 9% (1.6*1019/s)

D atoms: 4% (6.6*1018/s)
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● Earlier JET studies validating ERO2.0 W erosion and transport simulations [1,2]:

● L-mode #81472, Paux = 1 MW, unseeded, V-H divertor targets

● ELMy H-mode #82486, Paux = 10 MW, unseeded, V-H

● ELMy H-mode #94606, Paux = 18 MW, unseeded, V-H

● ELMy H-mode #97781, Paux = 34 MW, trace Ne, C-C 
(JET hybrid scenario)

● Now: H-mode #97490, no ELMs, Paux = 34 MW, Ne seeding, V-V (JET ITER baseline)

V-H

C-C

V-V

[1] H.A. Kumpulainen et al. NME 2022
[2] H.A. Kumpulainen et al. PPCF 2024
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