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Need for tungsten PFC testing in tokamak condition
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Next step fusion devices will face unprecedented heat loads and particle fluence:

  → ITER divertor has to survive > 10 years, 2000 hours of cumulated plasma time

  → New ITER baseline: Beryllium → Tungsten in first wall

   

[A. Loarte, TEC-2-3 Monday]

[J. Bucalossi, OV-2-4 Monday]

Tungsten (W) Environment Steady-state Tokamak: 

Two full-W tokamak devices in EU to address ITER urgent R&D:

▪ Superconducting toroidal field coils, actively cooled
▪ Long pulse record with LHCD: 22 min.
▪ Actively cooled tungsten ITER-grade lower divertor

• Full W device (upper and lower W-divertor)
• Divertor (DIM) and midplane manipulators (MEM)

ASDEX Up-Grade: 

ITER technology:

15960 W blocks (5% of the ITER divertor)

[R. Dumont, EX-3-4 Tuesday]

[T. Pütterich, OV- 3-2 Monday]

[R. Pitts et al., NME 2019]
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•  Introduction

•  Assessing heat loads on castellated and shaped components

•  Understanding damages : W-cracking and melting

•  Summary and prospects 
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▪ > 4000 plasma performed / 2400 disruptions
▪ > 18 hours total plasma cumulated time
▪ Total cumulated deuterium fluence:  1.8x1027 D.m-2
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Steady-state heat flux computed with FBG sensing probes

Multiplexed Fibre Bragg Gratings (FBG)

10 MW/m2

[Y. Anquetin et al., NME 2024]

[N. Chanet et al. FED 2021]
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Attached plasma condition
Te  20 eV 

[A. Hakola et al., this conference]

High-fluence campaign 
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Very High Spatial Resolution (VHR) 
IR camera 0.1mm/pixel 

[M. Houry et al. NF 2024]

Very high spatial IR thermography to assess the toroidal bevel @ MB scale

VHR IR image during WEST plasma experiment:

▪ Protection of the leading edges 
▪ Reduction of the wetted area → +20% higher load 

compared to flat top geometry
▪ PFC assembly is critical due to grazing incidence of MFL 

➢ vertical misalignment (ITER tolerance = ±0.3mm) 
➢ MB tilt ±1° measured in WEST (ITER tolerance?) 

Shaping foreseen in ITER: 0.5 mm height toroidal bevel 
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➢ T° gradients on MB scale (# from HHF tests)

𝒒𝒏 = 𝒒∥ 𝒔𝒊𝒏 𝜶 

Cu-OFHC

CuCrZr 

10 mm

0.5 mm

➢ Surface metrology mandatory (→ wall protection)
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Heat load on leading edges: prediction and observation

Heat flux computed with the 3D PFCflux code

*Optical Hot Spot (OHS)

• In WEST L-mode → acceptable temperature, with no vertical misalignments
• PIC modelling predicts higher heat load during ITER ELMs
 → High thermo-mechanical stresses, strong erosion and local melting
 → experimental validation is required: can we see the OHS with the VHR IR camera? 
 

▪  0.5 mm toroidal bevel offers good protection on poloidal leading edges
▪ MFL can still penetrate and strike the LE with high incidence angle*

[J. Gunn et al., NF 2019]

Thermal response estimation WEST L-mode plasma
qn =  10 MW.m-2 top surface → qch = 145 MW.m-2 
 Temperature maps: ANSYS simulation

450°C 

➢ Very high heat flux expected on small surface

flux

q
t=3.3mm
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IR thermography in metallic environment: specular reflection disturbing
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𝛷mes =  𝜆, 𝑇 ℒ0 𝜆, 𝑇 +  𝜆 σ𝑖 𝜀𝑖 𝜆, 𝑇𝑖 ℒ0(𝜆, 𝑇𝑖)

IR thermography sensitive to surface emissivity and potential reflection from the environment 

0.1 < W < 0.3 

→ Strong effect of the specular reflection in toroidal gap (TG) and trailing edge (TE) 
  → in WEST the optical hot spots are diluted in the reflected signal (higher T° would be required)

*cavity effect = reflections on the W 

gap surfaces → enhanced local 

apparent temperature

[Q. Tichit et al., NME 2024]

VHR-IR data: synthetic (thermal & photonic modelling)VHR-IR data: experimental

Hot spot

3D numerical workflow:PFCflux (heat load) / ANSYS (T°) / RAYMOND (reflection)

qn=9 MW.m-2, q
t=3.3mm

[A. Juven et. al., NME 38, 2024]
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• Introduction

• Assessing heat loads on castellated and shaped components

•  Understanding damages : W-cracking and melting

• Summary and prospects 
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▪ Visible “in-operando”, heat flux ~10 MW/m2
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PFC ageing: spontaneous cracks forming in the most loaded areas 

WEST plasma exposure leads to crack network on the top surface of MB in wetted area @ the outer strike point
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crack width: 40-90µm 

wetted areawetted area 

VHR-IR
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→ cracks related to thermal loading, but not only… plasma-induced effect? 
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MB16 S2797

→ transients initiate failure?

Dedicated HHF testing (e- beam): 

▪ 5 MW.m-2 steady state heat load 

▪ With/without pre-heating, no q

▪ 80-160 MW.m-2 transient (3ms, 6ms, 10ms) x100 cycles

→ No crack!

IR (2kHz)

HADES - High heAt loaD tESting - facility

Tstab ≈  550 °C (> DBTT) 

▪ Cracking not expected from standard HHF at those levels of steady-state 

flux

Tor

Pol
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MB27

Plasma operation with « macro-crack » failure

MB27

Macro-crack

Deep crack  accross MB
[M. Richou et al., NF 2022]

MB26
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Strategy = use HHF test facility (e-beam) to generate well controlled and  kind/level of damages 
→ Mimic damage on ITER and expose the damaged component in tokamak device (in-situ) 

Damage type sets with the impact factor (F) and cycle number 
(representative of the ELM size/number) – JUDITH2

No observable evolution of the crack damaged surface (VHR IR data)

 → heat exhaust capabilities unchanged (rising and cooling time similar to healthy component)

 → post-mortem measurement scheduled next year 

[M. Wirtz et al., NME 2017]

SSHL 24 MW.m-2

20 cycles

VHR IR

80 µm width  High energy X-Ray tomography 

(6 MeV)

4.4mm

fluence up to 1027 D/m2, Tsurf up to 700°C

JUDITH2



Top view

JxB
160 MW.m-2

steady-state

11

Tungsten melt transport across PFC gaps: sustained vs. transient
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Sustained melting in WEST: actively cooled PFC

Prompt bridge freezing due to contact with the surface across the gap (cold) 
- re-solidification prevents the melt from evolving around the corner

MEMENTO results

Transient melting in AUG: divertor manipultor

Gap bridging without wetting of the inner gap (no infiltration) in both devices WEST/AUG
→ Castellation preserved underneath 
→ subsequent consequences EM load during disruption to be assessed ...

MEMENTO (macroscopic melt dynamics) extensively validated through 
dedicated EUROfusion & ITPA experiments

JxB

coldintra ELM 900 MW.m-2

Experiment

20 cm.s-1 melt velocities and pool depth of several tens of μm

few cm.s-1 melt velocities and ultra-thin μm layers

[S. Ratynskaia et al., NF 2024]

[S. Ratynskaia et al., NME 2022]

JxB



RE energy (Runaway Electron Imaging Spectroscopy):
➢ 17 MeV monoenergetic beam

PFC energy load (TC): 
➢ 50 kJ (preliminary estimation with TC)

Duration of the RE impact (fast visible and IR data):
➢ 3 ms 
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➢1st controlled RE impact experiment on W-material (instrumented tile with TC) 
➢ dedicated set of diagnostics to characterize the RE beam

W PFC damage induced by runaway electron incidence 

Bulk W (inner bumpers)
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PFC damage: melting 
➢ circular impact 8cm
➢  1 mm depth
➢ bridging of the castellation

Work-flow  (GEANT4 - MEMENTO/LS-DYNA) to test predictive capabilities for ITER

[S. Ratynskaia, Plenary talk, 51th EPS Plasma Physics]

62431

Fast IR 4KHzFast visible 2KHz

RE impact

RE

.

.
TC

[G. Ghillardi et al,. PPCF 2025] 

➢ Major damage despite high melting point of W 

IRE=230kA



Summary
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➢ PFC testing in tokamaks and HHF test facilities are essential for the validation of the numerical tools used for 
ITER or other next step fusion devices 

➢ Damage mechanisms, failure modes → PFC lifetime and safe operation 

➢ No major failure observed in WEST, no evolution of the heat exhaust capabilities 

➢Unexpected cracking observed: combined thermomechanical “transient” & plasma induced-effect suspected ? 

➢ Various W damages tested:

− Exposure of pre-damaged PFUs performed at various levels: 

No significant degradation/evolution of the macro crack observed 

− Tungsten melt transport across PFC gaps:

Gap bridging in both devices WEST (sust.)/AUG (transient)

− First controlled RE impact on W material performed in WEST

Major damage despite high melting point of W 

Data available to test predictive capabilities for ITER
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→ experimental data used to test the 
predictive capabilities in ITER

(PFC lifetime + operation)

→ post-mortem on-going, further exposure  scheduled in 2025-2026 with highly radiative 
scenario (X-point radiator) [N. Rivals et al., EX-D 3067]
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