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@) Need for tungsten PFC testing in tokamak condition

\=F
Next step fusion devices will face unprecedented heat loads and particle fluence:
-> ITER divertor has to survive > 10 years, 2000 hours of cumulated plasma time [r. pitts et al., NME 2019]
- New ITER baseline: Beryllium — Tungsten in first wall [A. Loarte, TEC-2-3 Monday]

Two full-W tokamak devices in EU to address ITER urgent R&D:

Tungsten (W) Environment Steady-state Tokamak: ASDEX Up-Grade:

= Superconducting toroidal field coils, actively cooled * Full W device (upper and lower W-divertor)

= Long pulse record with LHCD: 22 min.<—— [R. bumont, EX-3-4 Tuesday] * Divertor (DIM) and midplane manipulators (MEM)
= Actively cooled tungsten ITER-grade lower divertor

ITER technology: A

Monobloc concept (MB)
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15960 W blocks (5% of the ITER divertor) [T. Piitterich, OV- 3-2 Monday]
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* Introduction
* Assessing heat loads on castellated and shaped components
* Understanding damages : W-cracking and melting

* Summary and prospects
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@) WEST phase 2 operation: ITER relevant ion-fluence and heat flux achieved
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[Y. Anquetin et al., NME 2024] P, [MW]

[N. Chanet et al. FED 2021]

I C7-HF

C8-C9

I Cl0-Cl1
i\ few ITER

= > 4000 plasma performed / 2400 disruptions
——= = > 18 hours total plasma cumulated time
= Total cumulated deuterium fluence: 1.8x102’7 D.m2

[A. Hakola et al., this conference]

pulses

[priv. com. R. Pitts and A. Pshenov]

Q=10 400s ITER pulse

==~ » radial

Fluence = fl“,- dt
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@) Very high spatial IR thermography to assess the toroidal bevel @ MB scale
Shaping foreseen in ITER: 0.5 mm height toroidal bevel

Very High Spatial Resolution (VHR)
IR camera 0.1mm/pixel

MFL_—— - = Protection of the leading edges

= Reduction of the wetted area - +20% higher load
| @ compared to flat top geometry
Cu-OFHC = PFC assembily is critical due to grazing incidence of MFL
> Y 0.5mm » vertical misalignment (ITER tolerance = £0.3mm)

toroidal » MB tilt £1° measured in WEST (ITER tolerance?)
» Surface metrology mandatory (= wall protection)

qn_= q,Sina

VHR IR image during WEST plasma experiment:
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[M. Houry et al. NF 2024]

» T° gradients on MB scale (# from HHF tests)
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C@‘) Heat load on leading edges: prediction and observation
= 0.5 mm toroidal bevel offers good protection on poloidal leading edges
= MEFL can still penetrate and strike the LE with high incidence angle*

* i | °
Optical Hot Spot (OHS) —_ > Very high heat flux expected on small surface

toroidal

Thermal response estimation WEST L-mode plasma
d,= 10 MW.m top surface = q.,= 145 MW.m2

Temperature maps: ANSYS simulation

Gtop (MW. m~2)

e S SR

MB26 PFU#8

' MB26 PFU#9
IMIB27PFU#8

Heat flux computed with the 3D PFCflux code

kqt=3.3mm

* |In WEST L-mode - acceptable temperature, with no vertical misalighments
* PIC modelling predicts higher heat load during ITER ELMS . Gunn et al., NF 2019]
— High thermo-mechanical stresses, strong erosion and local melting
— experimental validation is required: can we see the OHS with the VHR IR camera?
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@) IR thermography in metallic environment: specular reflection disturbing

=
IR thermography sensitive to surface eTissivity and potential reflection from the environment
(pmes =& (/1, T )LO(A, T )+ p(ﬂ. ) Zi Si(ﬂ, Ti)LO(/L TL) 0.1< Ew <0.3
3D numerical workflow:PFCflux (heat load) / ANSYS (T°) / RAYMOND (reflection) <— [A. Juven et. al., NME 38, 2024]
. ° *cavity effect = reflecti the W
VHR-IR data: experimental Tes [°C] VHR-IR data: synthetic (thermal & photonic modelling) e St

gap surfaces — enhanced local
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[Q. Tichit et al., NME 2024]

— Strong effect of the specular reflection in toroidal gap (TG) and trailing edge (TE)
— in WEST the optical hot spots are diluted in the reflected signal (higher T° would be required)
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* Introduction
* Assessing heat loads on castellated and shaped components
* Understanding damages : W-cracking and melting

 Summary and prospects
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’;@‘) PFC ageing: spontaneous cracks forming in the most loaded areas
WEST plasma exposure leads to crack network on the top surface of MB in wetted area @ the outer strike point
crack width: 40-30

9

= Visible “in-operando”, heat flux ~10 MW/m

= Cracking not expected from standard HHF at those levels of steady-state = transients initiate failure?

. . HADES - High heAt loaD tESting - facili
Dedicated HHF testing (e- beam): S - High heAt loaD tESting - facility

= 5 MW.m2 steady state heat load w000l A
T=700°C
- No crack!

Ts#b =~ 550 °C (> DBTT)

800 -

=  With/without pre-heating, no 2,
=  80-160 MW.m2 transient (3ms, 6ms, 10ms) x100 cycles
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- cracks related to thermal loading, but not only... plasma-induced effect?
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C@‘) Plasma operation with « macro-crack » failure

Strategy = use HHF test facility (e-beam) to generate well controlled and # kind/level of damages JUDITH2
- Mimic damage on ITER and expose the damaged component in tokamak device (in-situ) A
[M. Richou et al., NF 2022] [M. Wirtz et al., NME 2017] J JULICH

FORSCHUMGSZENTRUM

Deep crack accross MB

Damage type sets with the impact factor (F) and cycle number
(representative of the ELM size/number) — JUDITH2

[ 459852, t=125 (=0.3)  VHR IR 900°C

800°C High energy X-Ray tomography
700°C (6 MeV)

= 600°C
| flu str}ié]i,;;"‘f’ | 500°C
o } >, " (N | 400°C

300°C
200°C

VHR IR data (0.1Tmm/pixel)
fluence up to 10%” D/m?, T ¢ up to 700°C

No observable evolution of the crack damaged surface (VHR IR data)
— heat exhaust capabilities unchanged (rising and cooling time similar to healthy component)
— post-mortem measurement scheduled next year
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@) Tungsten melt transport across PFC gaps: sustained vs. transient

Transient melting in AUG: divertor manipultor ~ Sustaine

RS ENOY

d

et

melting in WEST: actively cooled PFC
e i %“iﬂ 8 side view

oy

T

160 MW.m2
steady-state

few cm.s™! melt velocities and ultra-thin ~um layers

500 uym

Prompt bridge freezing due to contact with the surface across the gap (cold)
300402 1000 1500 2000 260+03 - re-solidification prevents the melt from evolving around the corner

20 cm.s™! melt velocities and pool depth of several tens of um
MEMENTO (macroscopic melt dynamics) extensively validated through

. . . [S. Ratynskaia et al., NME 2022]
dedicated EUROfusion & ITPA experiments

Gap bridging without wetting of the inner gap (no infiltration) in both devices WEST/AUG
— Castellation preserved underneath
— subsequent consequences EM load during disruption to be assessed ...
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@) W PFC damage induced by runaway electron incidence
=

» 1%t controlled RE impact experiment on W-material (instrumented tile with TC)
» dedicated set of diagnostics to characterize the RE beam Bulk W (inner bumpers)

@\ T

FASTCAM SA-7 type 21@@K-M-128GB-FD

~Fast visible 2KHz

Fast IR 4KHz

1=230kA

7
| disruption
6
5 »]
I, x10 [MA
4 . p X 10 [MA] RE crash

: 5 J
1 » \
! e AL N
RE beam |
0 i 1 | i 1 1
26 27 28 29 3 31 32 33 34
Time (s)

/ I g
- X -
&L+ MO
DR y -
| A ; AT =
i B %
=
/ e B}
- 3 )
> = |
i
T
h Te

» Major damage despite high melting point of W

RE energy (Runaway Electron Imaging Spectroscopy): PFC damage: melting

» 17 MeV monoenergetic beam » circular impact J~8cm
PFC energy load (TC): [G. Ghillardi et al,. PPCF 2025] > ~1mm depth

» ~50 kJ (preliminary estimation with TC) » bridging of the castellation
Duration of the RE impact (fast visible and IR data):

> ~3ms [S. Ratynskaia, Plenary talk, 51th EPS Plasma Physics]

Work-flow (GEANT4 - MEMENTO/LS-DYNA) to test predictive capabilities for ITER
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7
@) Summary

» PFC testing in tokamaks and HHF test facilities are essential for the validation of the numerical tools used for
ITER or other next step fusion devices

» Damage mechanisms, failure modes - PFC lifetime and safe operation
» No major failure observed in WEST, no evolution of the heat exhaust capabilities
» Unexpected cracking observed: combined thermomechanical “transient” & plasma induced-effect suspected ?

- post-mortem on-going, further exposure scheduled in 2025-2026 with highly radiative
> Various W damages tested: scenario (X-point radiator) [N. Rivals et al, EX-D 3067]

— Exposure of pre-damaged PFUs performed at various levels:
No significant degradation/evolution of the macro crack observed
— Tungsten melt transport across PFC gaps:
Gap bridging in both devices WEST (sust.)/AUG (transient) |
— First controlled RE impact on W material performed in WEST
Major damage despite high melting point of W
Data available to test predictive capabilities for ITER -

- experimental data used to test the
predictive capabilities in ITER
(PFC lifetime + operation)
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