

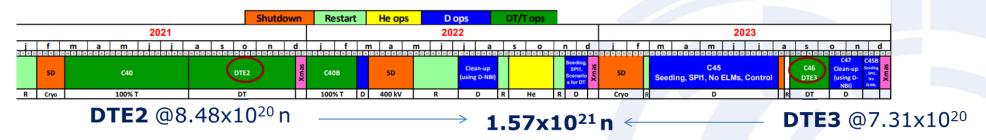
FEC2025

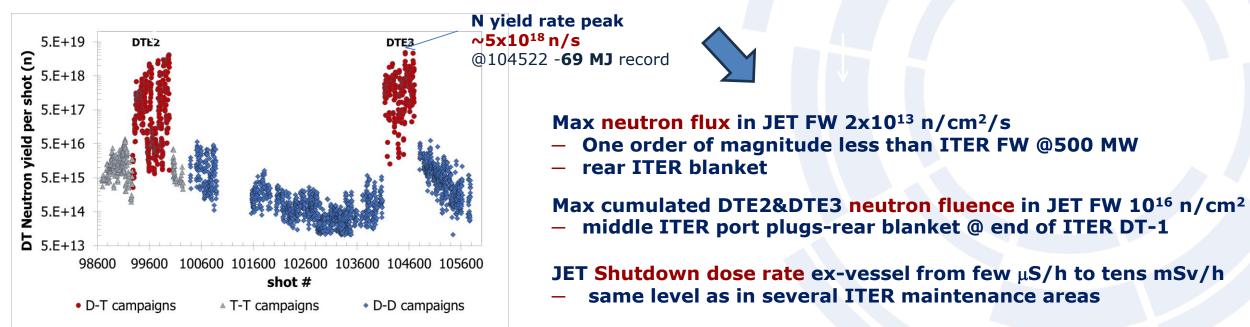
30th IAEA Fusion Energy Conference (FEC 2025)

Neutronics for ITER nuclear phase: insights and lessons learnt from JET DT operation

Rosaria Villari

ENEA NUClear Department



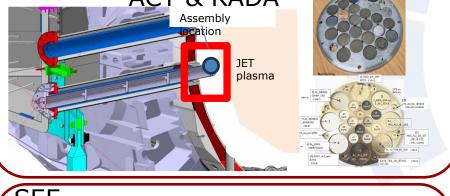


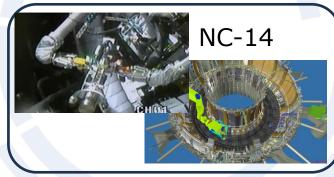
Huge neutrons production during DT campaigns at JET

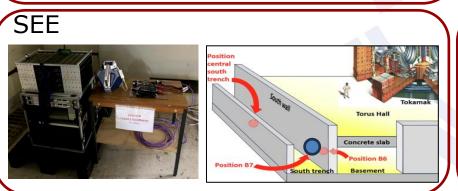
Unique Deuterium-Tritium (DT) campaigns at JET performed in 2021 & 2023

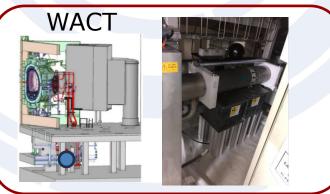
JET DT Operations relevant for ITER Nuclear phase

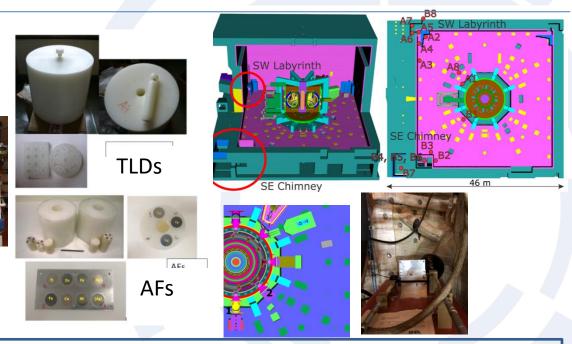
DT Neutron yield per shot 2021-2023


Unique technology-oriented experiments at JET in DT in support of preparation of ITER Nuclear operations


EUROfusion WP PrIO


- NC-14 Development and validation of methods for 14 MeV neutron diagnostics calibration
- ACT Activation measurements and analysis of ITER materials
- RADA Damage study of functional materials
- NEXP Neutron streaming and Shutdown Dose rate benchmark experiments
- TBMD Test of detectors for TBMvalidate Tritium Breeding predictions
- WACT Investigation of Water Activation in JET cooling loop
- SEE Study of Single Event Effects
 (SEE) induced by neutrons on
 electronics


[R. Villari, FED 217 (2025) 115133] [X. Litaudon, NF 64 (2024) 112006]



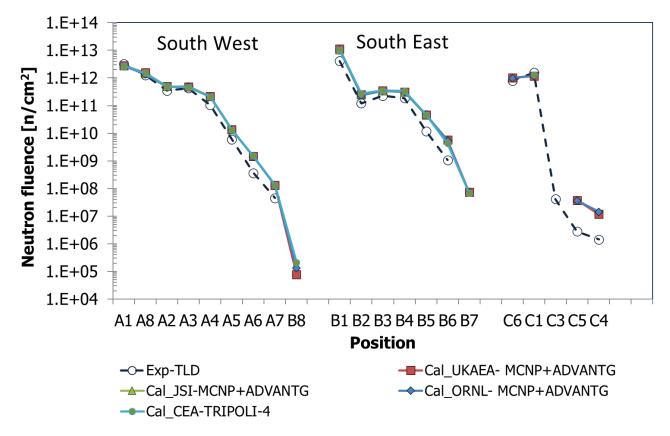
Neutronics benchmark experiments

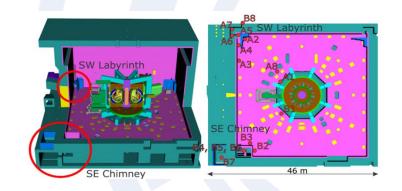
Neutronics experiments for validating neutronics codes and nuclear data used in ITER nuclear analyses in a real fusion environment in DT

- On operation: Neutron fluence streaming in penetrations in large /complex volumes
- **Off-operation:** Shutdown dose rate (SDDR) in maintenance area
- 23 positions
- >40 m from the plasma
- 8 orders of magnitude variation (10⁵ to 10¹³ n/cm²)
- **Online SDDR measurements since 2016 (still ongoing)**
- SDDR: few uSv/h to tens mSv/h ITER relevant range

Accurate measurements for quantitative comparison to simulations -> Validation

- **Neutron streaming Rad transport MCNP, ADVANTG, TRIPOLI-4® & OPENMC**
- SDDR Rad transport+ Activation: MCNP based Advanced D1S, D1SUNED, MCR2S, R2SUNED,R2Smesh, ORNL-R2S, N1S Other codes based OpenMC and TRIPOLI-4© R2S & D1S (ongoing)

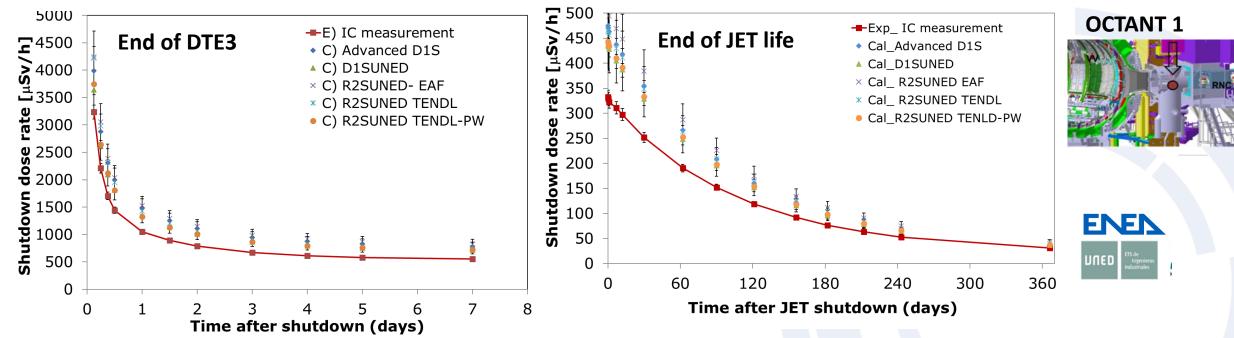




Neutron streaming benchmark experiment results in DT for validation of neutron transport codes

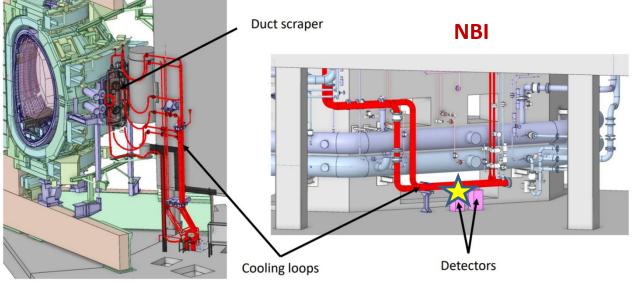
DTE2 @ 8.5x10²⁰ n

- ✓ C/E_{TLD} in the range ~0.9 -10
- ✓ C/C' within ±20%
- ✓ Increase of the overestimation with the distance from the machine

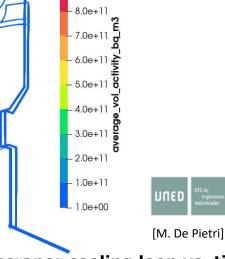

Comparison between Neutron fluence calculations & TLDs measurements for DTE2

- Demonstrated reliability of the codes used for nuclear analysis conservative
- Modelling & materials uncertainties main responsible for observed discrepancies

Experimental validation of Shutdown Dose Rate predictions in DT


SDDR calculations & IC measurements at the end of DTE3 and at the end of JET life vs. time in Octant 1

- Demonstrated reliability of MCNP-based SDDR tools (C/E within a factor 2)
- —Identified artifacts and limitations of the codes→ lead code developments
- -Materials & geometrical modelling inaccuracies main responsible for discrepancies


Unique Water activation experiment in real tokamak cooling loop under DT

NBI duct scraper cooling loop

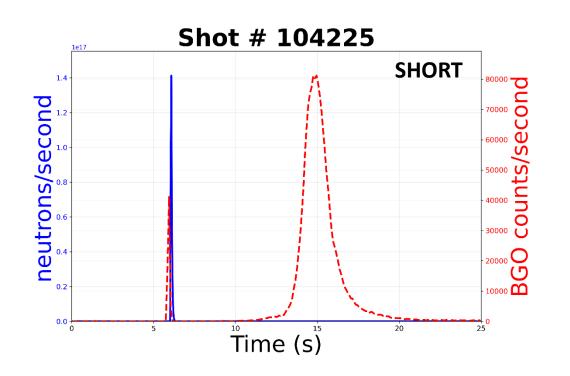
¹⁶O(n,p)¹⁶N (E_n>10.5 MeV)

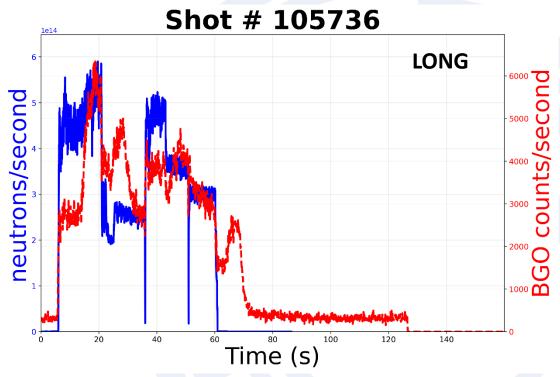
 $T_{1/2}$ 7.13 s β decay: γ 6.13 MeV (69%)& 7.12 MeV (5%)

- 1.0e+12 - 9.0e+11

Basement

FLUNED simulation of ¹⁶N activity along NBI-duct scraper cooling loop vs. time


Installation of water activation system for measurements of γ from ¹⁶N decay in JET basement during DD & DT campaigns

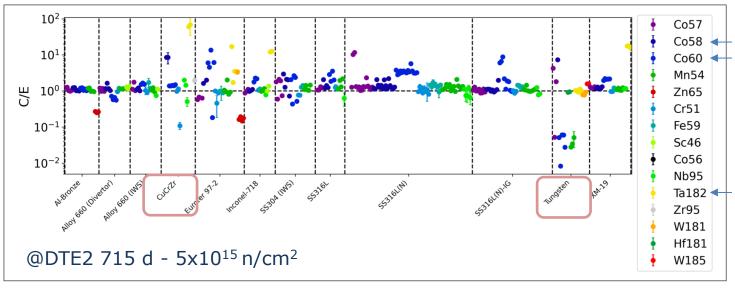


Unique Water activation measurements in tokamak in DT

Neutron yield rate (KN1) & Gamma measurements with WACT vs. time

[R. Villari, FED 217 (2025) 115133.]

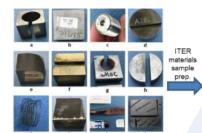
- First-time insight into activated water in tokamak cooling loops
- Correlation with plasma operations and circuit parameters
- Unique dataset for validating multiphysics tools
- Several lessons learnt for water activation- based diagnostics implementation

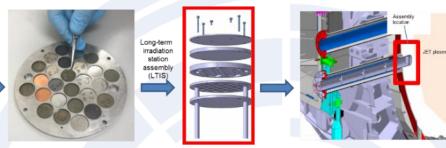


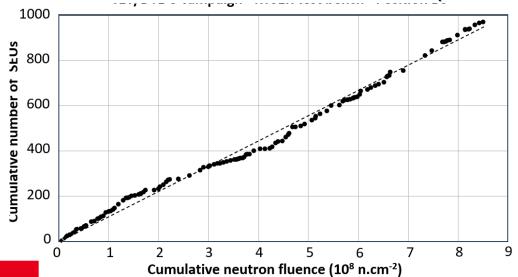
Characterisation of activation of ITER materials in DT

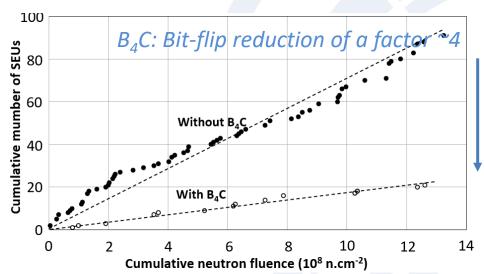
Activation measurements and analysis of ITER materials

- Irradiation of real ITER materials in DT
- Advanced **gamma spectra** measurements in various labs & material impurities analyses
- Simulations with MCNP6 & FISPACT-II


[L. Packer, Nuc. Fus., 64, 2024, 10]

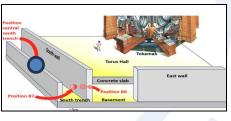

Comparison between Activity predictions MCNP6 + FISPACT II & measurements in ITER materials


- Demonstrated code reliability
- C/E for nuclides relevant for maintenance generally close or > 1
 - Conservative
- Contamination due to manufacturing techniques
- Lack of accuracy in elemental composition in material certificates
- Advised more sensitive measurement techniques for longlived nuclides



Validation of neutron induced SEE effect on electronics

Single Event Effects (SEEs): Random neutron interactions causing instant electronic malfunctions, data corruption, or damage → dedicated SEE experiment in JET basement during DT operations


RTSER = 384 bulk 65 nm CMOS SRAM circuits (3.2 Gbit total) CERN= 2x40 nm SRAM circuits (32 Mbit each)

DIAMON spectrometer

CERN test bench

[M. Dentan, IEEE TNS, 72 (2025) 1486]

Single Event Upset vs. cumulated neutron fluence in DTE3

C/E 0.86 (RTSER) & 1.12 (CERN)

- Validation of methods & models for neutron-induced bit-flips prediction
- High bit-flip rates and reliability degradations compared to environmental conditions
- Evident reduction of bit-flips with B_4C shield \rightarrow can be further improved

Conclusions & Outlook

JET DT Technological Exploitation –Unique Achievements

- Successful 14 MeV calibration of neutron diagnostics
- Enhanced nuclear experimental techniques and computational tools
- Validated ITER nuclear analysis codes and reliability
- Advanced knowledge of neutron irradiation effects
- Identified critical issues affecting reliability
- Built a large database and collected irradiated samples for future validation

Outstanding experience supporting ITER

Unique inputs for ITER nuclear phase and safety demonstrations

Limitations for Fusion reactors development

- Non-reactor-relevant structural materials & few tests
- No superconducting magnet; short operations
- Limited damage and transmutation
- No breeding blanket (except TBM mock-up)
- Some phenomena not investigated (e.g.ACP)

Strategic Priority

Further fusion-reactor relevant neutronics experiments in near future will be critical for advancing fusion reactor development and preserve the knowledge

X. LITAUDON, CEA, IRFM, St-Paul-Lez-Durance, France

M. DENTAN, CEA, IRFM, St-Paul-Lez-Durance, France;

CERN, Genève, Switzerland

N. FONNESU, ENEA, Frascati, Italy

L. JONES, UKAEA, Culham, UK

L.W. PACKER, UKAEA, Culham, UK

J. FIGUEIREDO, EUROfusion PMU, Garching, Germany;

IST, Lisboa, Portugal

J. MAILLOUX, UKAEA, Culham, UK

R. AFANASENKO, Karlsruhe Institute of Technology, Germany

J. ALGUACIL, UNED, Madrid, Spain

P. BATISTONI, ENEA, Frascati, Italy

T. BERRY, UKAEA, Culham, UK

S.C. BRADNAM, UKAEA, Culham, UK

P. BEAUMONT, UKAEA, Culham, UK

P. CARMAN, UKAEA, Culham, UK

J.P. CATALAN, UNED, Madrid, Spain

M. CECCHETTO, CERN, Genève, Switzerland

H. CHOHAN, UKAEA, Culham, UK

A. COLANGELI, ENEA, Frascati, Italy

D. CROFT, UKAEA, Culham, UK

J. CUFE, CEA, DES/ISAS/SERMA, Gif-sur-Yvette, France

M. DE PIETRI, UNED, Madrid, Spain

M. FABBRI, Fusion for Energy, Barcelona, Spain

T. EADE, UKAEA, Culham, UK

D. FLAMMINI, ENEA, Frascati, Italy

Z. GHANI, UKAEA, Culham, UK

C.L. GROVE, UKAEA, Culham, UK

A. HJALMARSSON, Uppsala University, Sweden

B. V. IOANNOU-SOUGLERIDIS, NCSR Demokritos, Athens, Greece T. VASILOPOULOU, NCSR Demokritos, Athens, Greece

A. KOLSEK, Fusion for Energy, Barcelona, Spain

D. KOTNIK, Jožef Stefan Institute, Ljubljana, Slovenia

R. KIEREPKO, Institute of Nuclear Physics PAS, Krakow, Poland

M. KLOSOWSKI, Institute of Nuclear Physics PAS, Krakow, Poland

D. LEICHTLE, Karlsruhe Institute of Technology, Germany

E. LEON, CIEMAT, Madrid, Spain

I. LENGAR, Jožef Stefan Institute, Ljubljana, Slovenia

E. LERCHE, Laboratory for Plasma Physics, ERM, Brussels, Belgium

R. LOBEL, UKAEA, Culham, UK

I.M. LOPEZ CASAS, CIEMAT, Madrid, Spain

S. LORETI, ENEA, Frascati, Italy

M. LOUGHLIN, Oak Ridge National Laboratory, Oak Ridge, USA

G. MARIANO, ITER Organization, St Paul Lez Durance, France

S. MIANOWSKI, UKAEA, Culham, UK

S. MOINDJIE, CERN, Genève, Switzerland

F. MORO, ENEA, Frascati, Italy

R. NAISH, UKAEA, Culham, UK

S. NOCE, ENEA, Frascati, Italy

J. PERIC, Jožef Stefan Institute, Ljubljana, Slovenia

Y. PENELIAU, CEA, IRFM, St-Paul-Lez-Durance, France

J.B. PONTIER, CEA, DES/ISAS/SERMA, Gif-sur-Yvette, France

V. RADULOVIC, Jožef Stefan Institute, Ljubljana, Slovenia

F. RIMINI, UKAEA, Culham, UK

P. ROMANO, Argonne National Laboratory, Lemont, USA

C. SHAND, UKAEA, Culham, UK

P. SAUVAN, UNED, Madrid, Spain

M.I. SAVVA, NCSR Demokritos, Athens, Greece

L. SNOJ, Jožef Stefan Institute, Ljubljana, Slovenia

I.E. STAMATELATOS, NCSR Demokritos, Athens, Greece

Ž. ŠTANCAR, UKAEA, Culham, UK

A.N. TURNER, UKAEA, Culham, UK

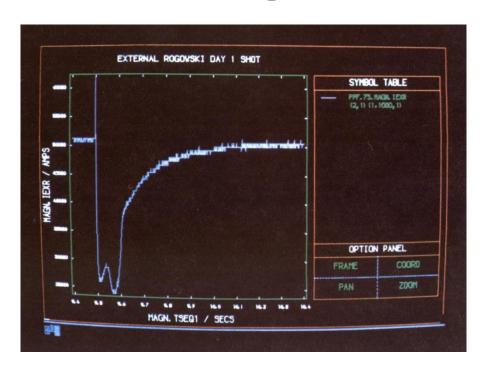
R. VILA, CIEMAT, Madrid, Spain

A. WOJCIK-GARGULA, Institute of Nuclear Physics PAS, Krakow, Poland

J. WLODARCZYK, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland R. WORRAL, UKAEA, Culham, UK

JET CONTRIBUTORS*

* See the author list of "Overview of T and D-T results in JET with ITER-like wall" by CF Maggi et al. 2024 Nucl. Fusion 64 112012



Thank you! Questions/Comments?

JET First Shot 25 June 1983

Credit: UKAEA

JET 40th anniversary 25 June 2023

After 40 years of operation, JET concluded its activities in December 2023, providing the scientific community with an invaluable wealth of knowledge for advancing nuclear fusion research