30th IAEA Fusion Energy Conference (FEC2025) 13-18 October, 2025, Chengdu, People's Republic of China

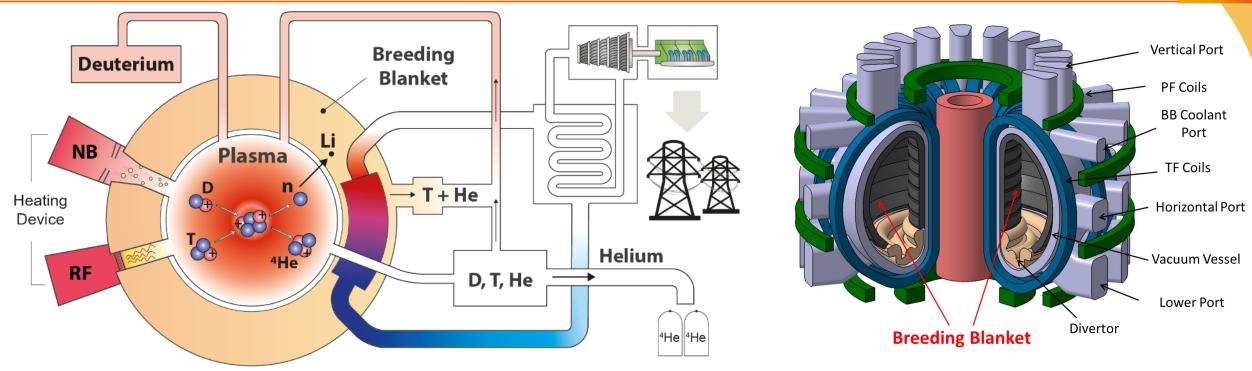
Experimental Study on Tritium Release from Li₂TiO₃ Pebbles as Tritium Breeder through International Collaboration between Korea and China

Yi-Hyun PARK¹, Young Ah PARK¹, Mu-Young AHN¹, Woong Chae KIM¹, Haixia WANG²

¹ Korea Institute of Fusion Energy (KFE), Korea
 ² Institute of Nuclear Safety Technology (INEST), China

Table of Contents

Background 01. 02. **Manufacturing of Tritium Breeder Pebbles** 03. **Neutron Irradiation Test and T Release Test of Breeder Pebbles Summary** 04.



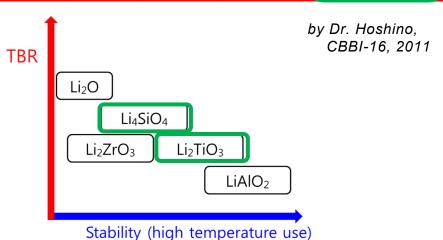
01 Background

Concept of Fusion Power Plant and Breeding Blanket

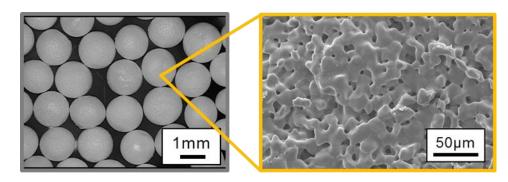
- in Fusion Core: $D + T \rightarrow 4 \text{ He} + n + 17.6 \text{ MeV}$
- in Breeding Blanket:
 ⁶Li + n → ⁴He + T + 4.8 MeV
 ⁷Li + n → ⁴He + T + n' 2.5 MeV
 ⁹Be + n → ⁸Be + 2n 2.5 MeV

- Functions of Breeding Blanket
 - Tritium Breeding to ensure fuel self-sufficiency
 - ▶ Heat Conversion and Extraction for electricity generation
 - Neutron and Gamma-ray Shielding

Korean Breeding Blanket Concepts and Materials


Parameters	HCCR ITER TBM	HCCP ITER TBM	HCCR DEMO	HCCP DEMO	
FW Heat Flux	0.3 MW/m ²	0.3 MW/m ²	0.5 MW/m ²	0.5 MW/m ²	
Neutron Wall Loading	0.78 MW/m ²	0.78 MW/m ²	1.5 MW/m ²	1.5 MW/m ²	
Armor Material (Plasma Facing)	n/a	n/a	Tungsten	Tungsten	
Structural Material	RAFM (ARAA)	RAFM (Eurofer/ARAA)	RAFM (ARAA)	RAFM (ARAA)	
Tritium Breeder Material	Li ₂ TiO ₃	Li ₄ SiO ₄ /Li ₂ TiO ₃	Li ₂ TiO ₃	Li ₄ SiO ₄ /Li ₂ TiO ₃	
Neutron Multiplier Material	Be	Be	Beryllide	Beryllide	
Reflector Material	Graphite	n/a	Graphite	n/a	
Max. dpa (Lifetime of blanket)	3	3	20 / 50	20 / 50	
Primary Coolant	Helium	Helium	Helium	Helium	
Coolant Inlet/Outlet Temperature	300/500 °C	300/500 °C	300/500 °C	300/500 °C	
Coolant Pressure	8 MPa	8 MPa	8 MPa	8 MPa	
Purge Gas	He with 0.1% H ₂	He with 0.1% H ₂	He with 0.1% H ₂	He with 0.1% H ₂	
Enrichment (⁶ Li)	70%	70%	90%	90%	

Tritium Breeder Ceramics



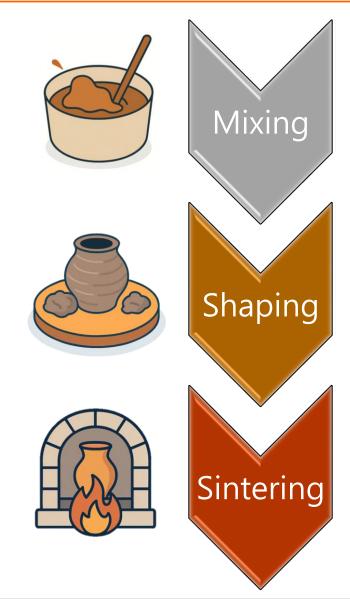
Candidates of Solid-type Tritium Breeders

	Li ₂ O	Li ₂ AIO ₂	Li ₂ ZrO ₃	Li ₄ SiO ₄	Li ₂ TiO ₃
Li Vaporization (in additional H ₂)	> 600°C	> 900°C	> 800°C	> 700°C	> 800°C
Long period use (2 years)	Instability (Li vaporization)	Stability	Instability (crack)	Instability (Li vaporization)	Instability (Reduction of Ti)
Tritium release (easy release)	> 400°C	> 400°C	> 400°C	> 350°C	> 300°C
Optimum operat ing temp.	400 - 600 °C	400 - 900°C	400 - 800°C	350 - 700°C	300 - 800°C
Tritium breeding ratio (TBR)	High	Lower	Middle	Middle	Middle
Thermal conduc tivity	High	Middle	Middle	Middle	Middle

- Shape of Tritium Breeder Ceramics : Pebble
 - Stress Distribution
 - Packing Behavior
 - Thermal Conductance
 - Purge Gas Flow
 - **•** . . .

(Li₂TiO₃ Pebbles)

by Y.-H.Park et al, JNM 455 (2014), 106


02

Manufacturing of Tritium Breeder Pebbles

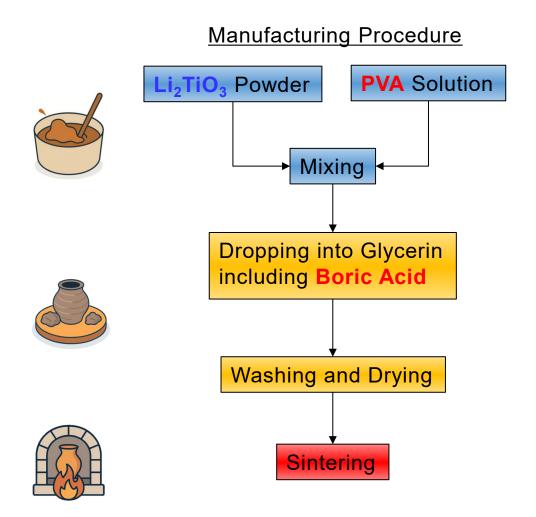
Manufacturing Process for Ceramic Materials (using Sintering)

Manufacturing Process for Ceramic Pebble (using Sintering)

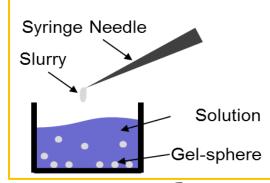
- Raw Powder (Li₂TiO₃, Li₄SiO₄, Li-M-O, et. al.)
- Binder Materials
- Solvent

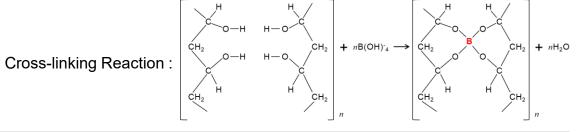
Shaping

- Wetting Process (Dropping, Emulsion, ...)
- Drying Process (PIM, CM, 3D Printing, ...)

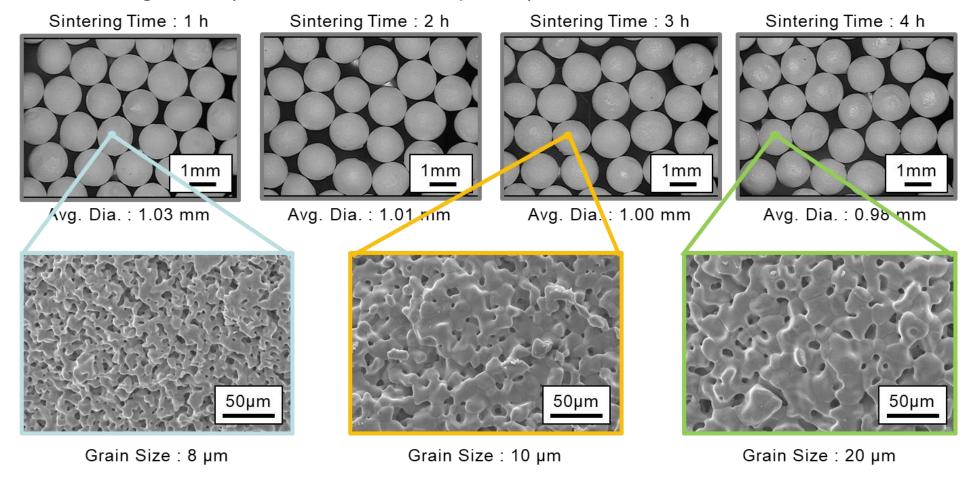


- Temperature
- Time
- Atmosphere


Development of Manufacturing Process for Li₂TiO₃ Pebbles



Slurry Droplet Wetting Method based on the Cross-linking Reaction between PVA and Boric Acid

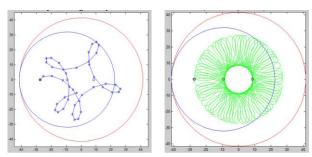


Parametric Study on Sintering Conditions for Li₂TiO₃ Pebbles

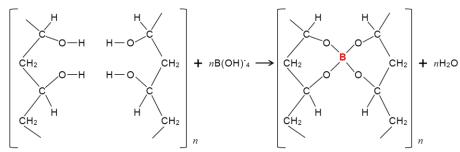
Effect of Sintering Time (1200 °C, Air atmosphere)

- Grain size was increased with increasing sintering time.
- The whole pore of the sintered pebble was open type.
- The open porosity was about 10 %. (Sintering Time: 3 h)

Mass-production System for Slurry Droplet Wetting Method


Automatic Slurry Dispensing System

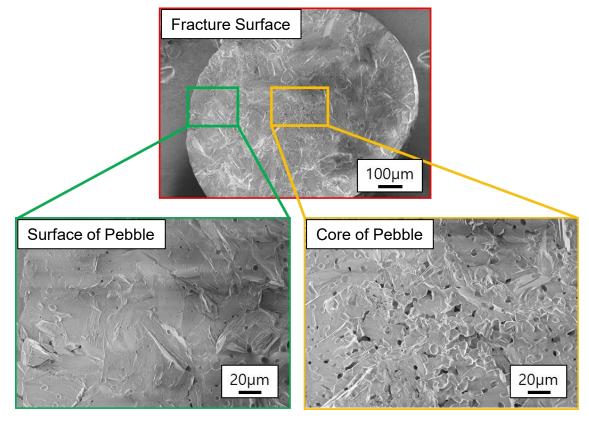
Dispensing Unit


; for instillation of Li₂TiO₃ slurry

Trace of Drop Point through the Moving Needle

Glycerin Bath

; for hardening of droplets

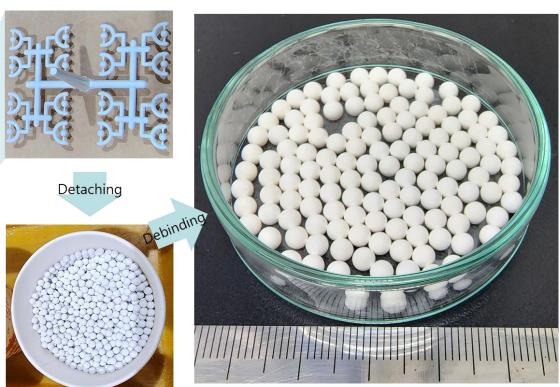

Automatic maintaining Unit

; for constant distance between syringe needle and glycerin surface

Shortcoming of Droplet Wetting Method for Mass-production

- Non-uniform Microstructure in Sintered Pebbles caused by Changing Concentration of Boric Acid
 - Decrease in the concentration of boric acid due to its consumption in the cross-linking reaction
 - Difference in hardening speed between the surface and the core of the droplets

[Microstructure of Sintered Li₂TiO₃ Pebble after Crush Test]

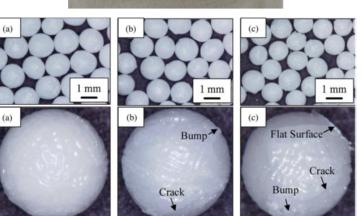

Development of Manufacturing Process for Li₂TiO₃ Pebbles

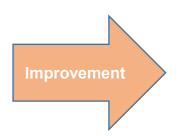
Li₂TiO₃ pebbles have been successfully manufactured using Powder Injection Molding (PIM) process

Mold Size: 3.7 mm, 1.0 mm (= Diameter of Green Pebbles)

Amount of Binder: 48 %

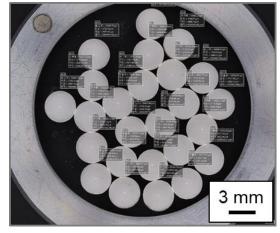
Debinding Conditions: 800 °C, 1 h

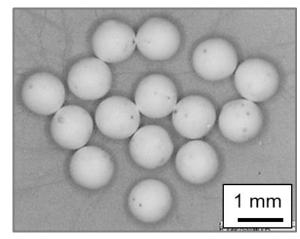

Improvement of Sintering Process for Mass-production



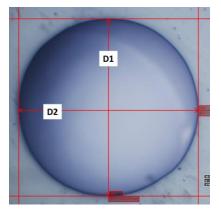
- Formation of Defects caused by Batch Process
 - Sintering between the contacted neighboring pebbles
 - → Crack, Bump, Flatted Spot, and so on.

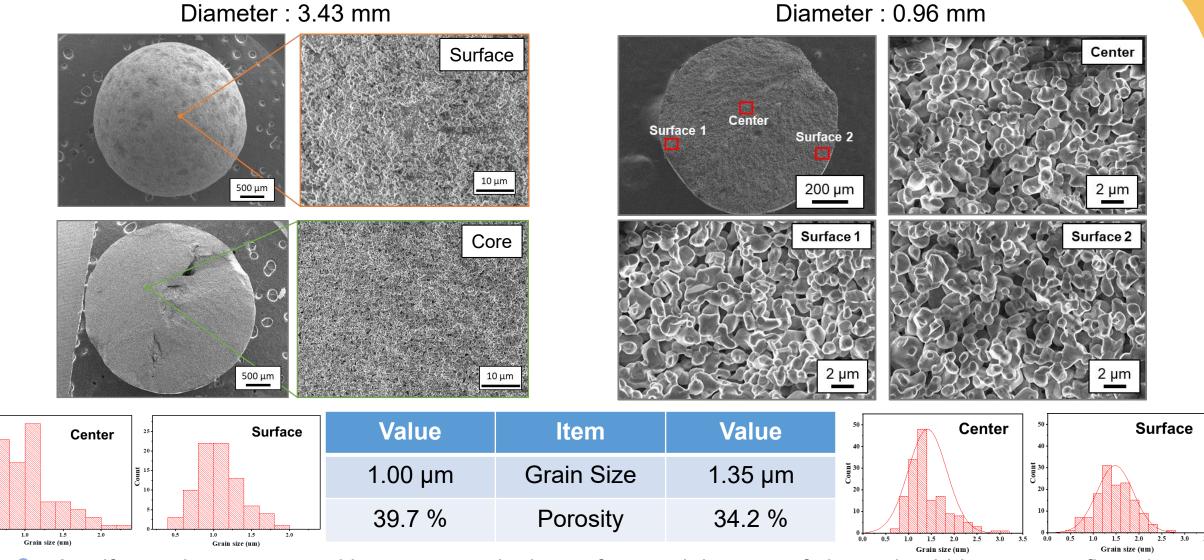
Rotating Sintering System was adopted to prevent the sintering between neighboring pebbles in the crucible.





by Y.-H.Park et al, FED 109-111 (2016), 443


Morphology of Li₂TiO₃ Pebbles manufactured using PIM Process


Sphericity = D1 / D2, (D1 > D2)

Value	Item	Value
3.70 mm	Mold Size	1.00 mm
3.43 mm	Average Diameter	0.96 mm
< 1.01	Average Sphericity	< 1.01
16 %	Volume Shrinkage Ratio	15 %

- Combined pebbles were not observed due to the pebble moving in the rotating tube during sintering process.
 - Defects (crack, bump, flatted surface, and so on) were not formed at the surface of sintered pebbles.
- The shrinkage ratio can be used as a parameter to design the mold in order to control the pebble diameter.

A uniform microstructure with open pores in the surface and the core of sintered pebbles was confirmed.

Manufacturing Status of Li₂TiO₃ Pebbles based on Drying Process

Batch #	# 1	# 2	# 3	# 4	# 5 ~ (target)	
Diameter	3.43 mm	0.96 mm	1.19 mm	1.19 mm	1.00 ~ 1.20 mm	
Porosity	39.7 %	34.2 %	32.6 %	25.9 %	~ 10 %	
Pore Type	Open	Open	Open	Open + Closed	Open	
Grain Size	1.00 µm	1.35 μm	1.35 µm	-	1.00 ~ 1.50 μm	
Shaping Proc.	PIM	PIM	PIM	PIM	PIM or 3DP	
Manuf. Status	Done	Done	Done	Done	On-going	
Morphology	3 mm	1 mm		200um		Porosity: ~ 10 9
Microstructure	<u>10 μm</u>	2 μm	1 <u>um</u>	2 μm	1 2 3 4 Batcl	ain Size: ~ 1.5 μ - 5 ~ n #.

03

Neutron Irradiation Test and Tritium Release Test of Breeder Pebbles

Breeding and Release Research under KO-CN International Collaboration Program

Neutron Irradiation and Tritium Release of Li₂TiO₃ Pebbles using D-T Fusion Neutron Source Facility

Phase 1: 2021.10 ~ 2023.10

Phase 2: 2024.12 ~ 2026.12

Memorandum of Understanding

Korea Institute of Fusion Energy (KFE), Republic of Korea

Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (INEST, HFIPS, CAS). People's Republic of China

This Memorandum of Understanding (hereinaft purpose of collaboration in fusion energy research of Fusion Energy (KFE), Republic of Korea and In Hefei Institutes of Physical Science, Chinese Ad People's Republic of China, (hereinafter referre individually). This MoU is an extension of the l Institute, currently known as the Korea Institute o Energy Safety Technology that was concluded on

The principal objective of this collaboration cooperation among the Parties in fusion neutron research and related fields in order to enhance contribution in these fields for their mutual benef

ARTICLE II. SPECIFIC AREAS OF COOPE For the long-term nature of the present MoU, the

be exercised in, but not be limited to, the follow

- Fusion Concept Studies (CFETR, C-DEI
- 2.2 Fusion Neutron Source Facility Exper Generator (HINEG-CAS))
- Fusion Neutron Source Facility Design
- Applications of Super Multi-functional C
- Fusion Structural and Functional Mater
- Tritium Analysis for Fusion System
- Fusion Nuclear Safety Technology (ME Breeding Blanket Technology
- 2.9 Nuclear Applications
- 2.10 Other topics as mutually agreed by both

- Form of cooperative activities under this MoU may include such areas of mutual interest as: 3.1. Exchange of personnel
- 3.2. Utilization of equipment, devices, materials, and instrumentations
- 3.3. Exchange of technical information, data and experies
- 3.4. Participation in seminars, workshops 3.5. Other collaboration as the Parties may

ARTICLE IV. SOURCE OF FUNDING A Cooperative activities under this MoU will

personnel available to the Parties. Decision mutual arrangement between the Parties.

ARTICLE V. INTELLECTUAL PROPER 4.1. Either Party has a non-exclusive, irre

technical information created or furnished in for its own internal research and developme information shall be the subject of a separat

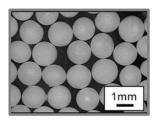
case-by-case basis. The information may no written consent of the Party that supplies the 4.2. The publications, patents and other apr cooperative activities under the MoU shall

DISPUTE SETTLEMENT

All disputes arising under this MoU shall be equality through negotiations and conciliato

ARTICLE VII. ENTRY INTO FORCE A

This MoU shall enter into force after havin for five (5) years, unless terminated earlier l to the other party. This MoU may be modifi-The termination of this MoU shall not affect that are initiated prior to such termination


IN WITNESS THEREOF, each of the Par duplicate in English by their duly authorized

Korea Institute of Fusion Energy

Director Genera

Institute of Nuclear Energy Safety Technol ogy, Hefei Institutes of Physical Science, C hinese Academy of Sciences

People's Republic of China

Li₂TiO₃

Breeder Pebbles

(KFE) Li₂TiO₃ Breeder Pebbles

- Synthesis of Li₂TiO₃ Raw Powder
- Fabrication of Li₂TiO₃ Breeder Pebbles
- Evaluation of un-irradiated Li₂TiO₃ Pebbles

(HFIPS) D-T Neutron Source

- Neutron Irradiation on Li₂TiO₃ Pebbles
- Measurement of Bred Tritium
- Evaluation of irradiated Li₂TiO₃ Pebbles

MoU between KFE and INEST

1st Neutron Irradiation Test on Li₂TiO₃ Pebbles

KFE

Date: 2023.06

Neutron Source : HINEG-CAS

Neutron Energy: 14.1 MeV

Neutron Yield : ~ 10¹² n/s

Irradiation Test Conditions

Duration Time : 6 h

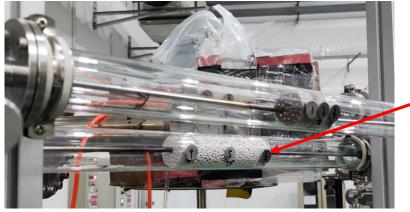
◆ Total Number of Neutron: 1.104 x 10¹⁵ n

Neutron Fluence at Pebble: 9.96 x 10¹¹ n/cm²

Tritium Breeder Sample

Material : Li₂TiO₃ Pebbles

Diameter: 3.43 mm

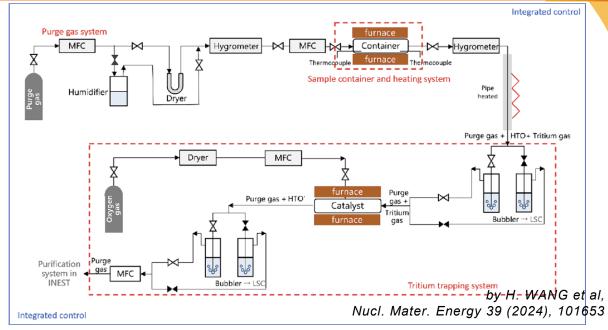

Sphericity : < 1.01</p>

Porosity: 39.7 %

• Amount : 274 g

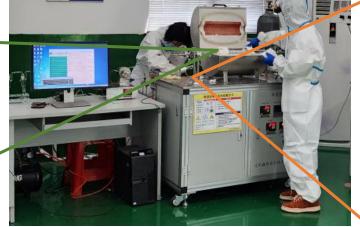
Nb Foil

Cadmium Sheet



Tritium Release Test of Irradiated Li₂TiO₃ Pebbles

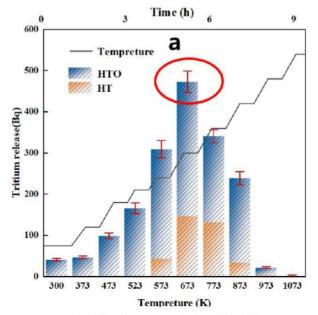
KFE

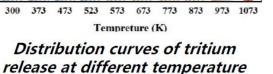

- Test Conditions
 - ▶ Purge Gas : He + 1 % H₂
 - Flow Rate of Purge Gas : 100 ml/min
 - ▶ Humidity Level : < 15 ppm</p>

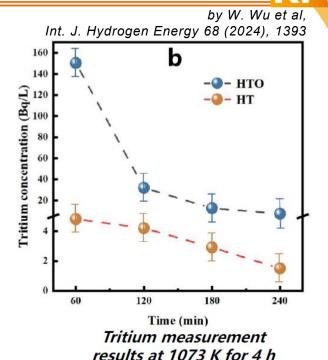
 - O Catalyzer to change HT → HTO : Pt/SDB
 - Tritium Measurement : LSC Method (Lower Detection Limit : 0.7 Bq/L)

<Irradiated Pebble Assembly>

<Tritium Release System>


<Bubblers to trap HTO>


1st Tritium Release Test Results from Irradiated Li₂TiO₃ Pebbles


<Tritium Radioactivity in Bubblers>

T(K)	Radioactivity (Bq)						
	1#	2#	3#	4#	5#	6#	
RT	39.1	0.1		1.2	0.1		
373	46.0	0.1		0.2	0.1		
473	98.8	0.2		0.1	0.1		
523	163.9	0.6		1.1	0.1		
573	264.1	0.9	BG	43.8	0.1	BG	
673	325.2	1.5		145.6	0.5		
773	208.0	0.8		131.4	0.6		
873	204.0	0.9		33.5	0.1		
873'	22.2	0.1		3.5	0.1		
Total	HT	O: 1376.5 Bq		Н	T: 362.2 Bq		

*BG: Background

- Before heating (during irradiation): A certain amount of HTO (54.4 Bg) and HT (23.6 Bg) was released from the surface of Li₂TiO₃ pebbles.
- At elevated temperature: Tritium release peaked at 400 °C, with the release ratio of HTO to HT being approximately 79.3 % to 20.7 %.
- At 800 °C: The tritium concentration decreased to background levels, indicating no residual tritium retention in the pebbles after 4 h.

04 Summary

Summary

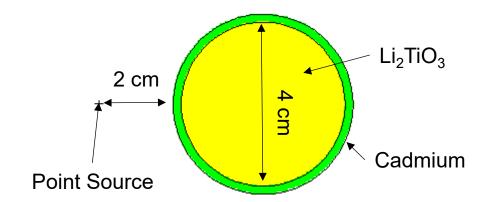
- Li₂TiO₃ pebbles with high sphericity for tritium breeder material were successfully fabricated using Slurry Droplet Wetting process and Powder Injection Molding (PIM) process.
 - In the PIMed Li₂TiO₃ pebbles, a uniform microstructure was observed both at the surface and the core of the sintered pebbles, while no defects resulting from sintering between neighboring pebbles were detected.
- Tritium production and release experiments were conducted on Li₂TiO₃ pebbles with 14.1 MeV fusion neutron source HINEG-CAS and tritium release system.
 - The total radioactivity of tritium released from the irradiated Li₂TiO₃ pebbles with a weight of 274 g was approximately 1,866.4 Bq.
 - The tritium release peaked at 400 °C, with the release ratio of HTO to HT being approximately 79.3 % to 20.7 %.
- Future Works;
 - Validate the performance of oxidizers in tritium release system
 - Investigate the effects of purge gas composition
 - Compare the influence of breeder pebble properties

Thank you for your kind attention !!!

Yi-Hyun PARK

yhpark@kfe.re.kr

MCNP Result of Tritium Production

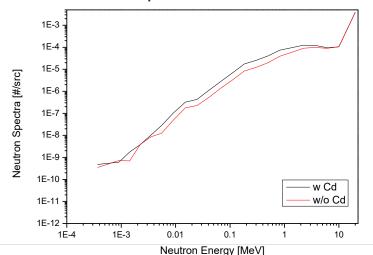

MCNP Model

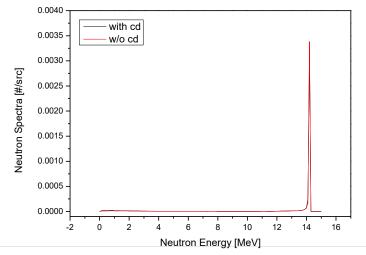
Source : 14.1 MeV Point Source

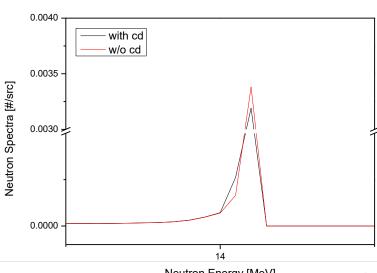
Material : Li₂TiO₃ (Natural Lithium)

Och Thickness: 2 mm

Weight of Li₂TiO₃: 274 g




Results


○ T Production (with Cd): 3,787 Bq (2.24x10¹²) regarding neutron fluence

▶ T Production (w/o Cd) : 4,146 Bq (2.33x10¹²) regarding neutron fluence

Neutron Spectrum

