

Modelling of mildly relativistic runaway electrons

Development of reduced-kinetic model and validation in KSTAR ohmic startup

Y. Lee¹, P. C. de Vries², P. Aleynikov³, H.-T. Kim⁴, J. Lee⁵, J. Gwak¹, K. Park¹, G. Nam¹, J. Jang⁵, J.-K. Park¹ and Y.-S. Na^{1*}

¹Department of Nuclear Engineering, Seoul National University, Seoul, South Korea

²ITER Organization, France

³Max-Planck Institute fur Plasmaphysik, Greifswald, Germany

⁴United Kingdom Atomic Energy Authority, United Kingdom of Great Britain and Northern Ireland

⁵Korean Institute of Fusion Energy, South Korea

leeys1996@snu.ac.kr ysna@snu.ac.kr *

Main references

[1] H.-T. Kim et. al., Development of full electron magnetic plasma burn-through model and validation in MAST, *Nucl. Fusion*. 62, 126012 (2022)
[2] Y. Lee et. al., Kinetic modelling of start-up runaway electrons in KSTAR and ITER, *Nucl. Fusion*. 63, 106011 (2023)
[3] Y. Lee et. al., Binary Nature of Collisions Facilitates Runaway Electron Generation in Weakly Ionized Plasmas, *Phys. Rev. Lett.* 133, 175102 (2024)

30th IAEA Fusion Energy Conference (IAEA FEC 2025)
Oct 16th, 2025, Cheongdu

Contents

Introduction

- Model development
 - Reduced kinetic model of mildly relativistic runaway electrons
 - Coupling with DYON

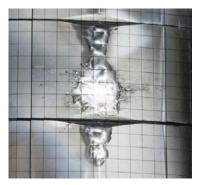
- Model validation
 - Validation in KSTAR ohmic startup

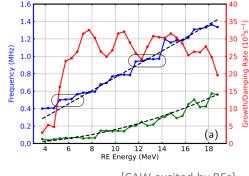
Conclusions

Lay physical and engineering foundation of designing a RE-free scenario in future fusion reactors

Introduction

Runaway Electrons


Runaway Electrons (REs)

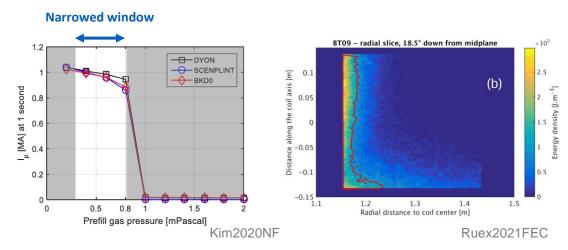

 Runaway electrons are the energetic electrons that will be continuously accelerated by the electrical field due to the decrease in the Coulomb collision frequency with increasing energy [Wilson1925].

Hazards of REs

- Damage to devices [Matthews et al., 2016]
- Trigger instabilities [Liu et al., 2023]

[JET in-vessel image]

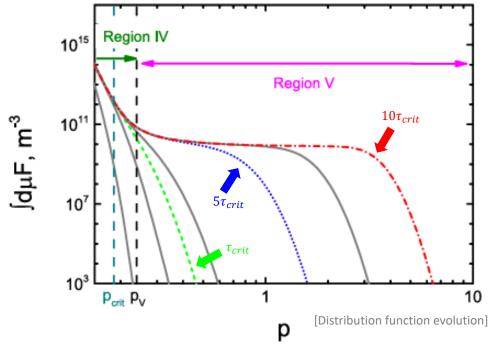
[CAW excited by REs]


Disruption REs

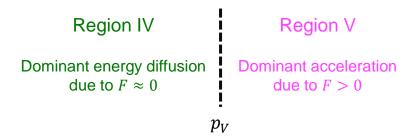
Main interest of RE research community [Breizman et al., 2019].

Startup runaway electrons – Obstacles of ITER startup

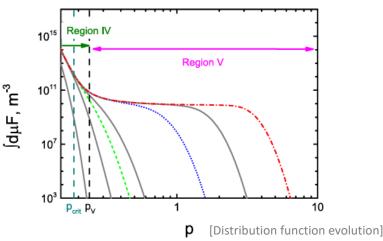
- Strict conditions for burn-through success
 - Plasma-driven failure at high prefill pressure (>= 0.8 mPa) Kim2020NF
 - Runaway-driven failure at low prefill pressure (<= 0.3 mPa) Gribove2018EPS Hoppe2022JPP
 - ➤ The conservative prediction suggested the failure at 0.6 mPa. Lee2024PRL

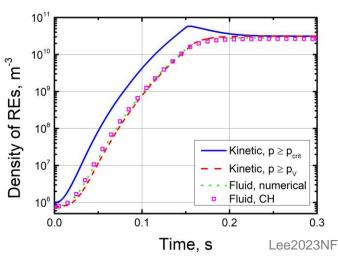

- Risk of catastrophic threat
 - Toroidal field coil quench
 - Reported in WEST

Safe plasma startup in ITER requires understanding of startup REs.

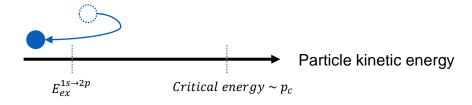

- Runaway electrons are born at the region-based critical momentum p_V .
 - Not the force-free momentum p_{crit} often referred to as the critical momentum.

Force-free critical momentum p_{crit}

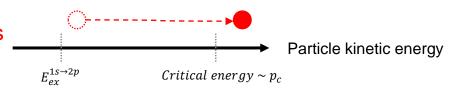

$$F = F_{electric} - F_{fric} = 0$$


Region-based critical boundary p_V

- The initial startup runaway momentum is the region-based momentum p_V .
 - Not the force-free momentum p_{crit} often referred to as the critical momentum.

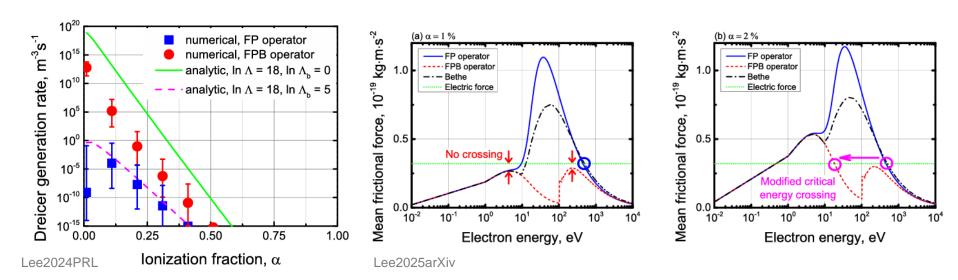


- Main Conclusions
 - > Fluid description of runaway density evolution is good.
 - \triangleright Primary runaway particles are born with initial momentum p_V .



• In early startup, runaway generation mechanism in non-diffusive.

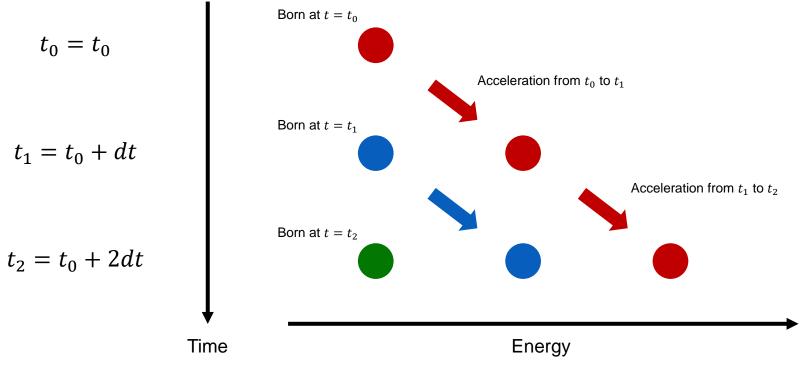
Inelastic collision prohibits electron acceleration



Collisionless acceleration allows electron energy gain above p_c

- In early startup, runaway generation mechanism in non-diffusive.
 - The Fokker-Planck description severely underestimates the generation rate.
 - > The effective critical momentum can be significantly reduced or even disappear.

This implies $v_{RE} \ll c$ and thereby necessitates a mildly relativistic correction


Model development

Reduced kinetic model of mildly relativistic runaway electrons
Coupling with DYON

Multi fluid approximation of mildly relativistic runaway current

Multi-fluid description of runaway electrons

Multi fluid approximation of mildly relativistic runaway current

- The multi-fluid runaway model is consistent with the kinetic model.
 - The total runaway current density is "sum" of every runaway fluid currents

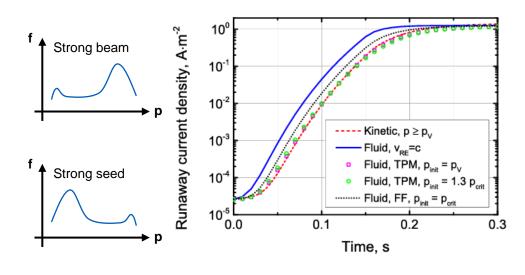
$$j_{RE,i+1} = ec \sum_{i' \le i} dn_{RE,i'+\frac{1}{2}} \beta_{i'+\frac{1}{2}}(t_{i+1}),$$

Fluid runaway velocity

$$\beta_{i'+\frac{1}{2}}(t_{i+1}) = \begin{cases} \beta_V \approx p_V & \text{if } i=i' \text{ Seed velocity} \\ \beta_{i'+\frac{1}{2}}(t_i) + (\frac{d\beta}{dt})_{i'+\frac{1}{2}}(t_{i+1}-t_i) & \text{if } i>i' \text{ Accelerated velocity} \end{cases}$$

$$\text{Test Particle Method (TPM)}$$

Note the second of the second


Successful verification!

Single fluid approximation of mildly relativistic runaway current

- Simple idea is to introduce the mean runaway velocity $\beta_{RE,i} \equiv \frac{J_{RE,i}}{ecn_{RE,i}}$
 - Runaway current density : $\frac{dj_{RE}}{dt} = ec\beta_V \frac{dn_{RE}^{seea}}{dt} + ec\frac{d\beta_{RE}}{dt}n_{RE}^{beam} + \dots$
 - > Single fluid model has comparable accuracy to multi-fluid free fall model.
 - Two critical asymptotes
 - ➤ When runaway seeding is weak
 - β_{RE} goes to runaway "beam" velocity.

- When runaway seeding is strong
 - β_{RE} goes to runaway "seed" velocity.

Model development

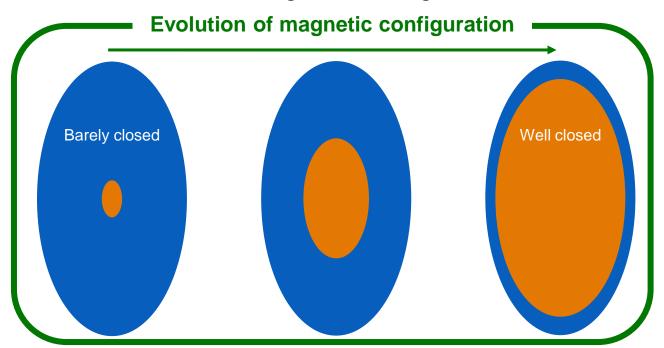
Reduced kinetic model of mildly relativistic runaway electrons

Coupling with DYON

Transport features of runaway electrons during startup

Runaway transport mechanism relies on magnetic configuration.

Closed field configuration


Radial stochastic transport

$$\tau_{RE} \propto \frac{a^2}{v_{RE}}$$

Open field configuration

Parallel streaming loss

$$\tau_{RE} \approx \frac{L}{v_{RE}}$$

Need to be coupled with mildly relativistic runaway velocity $v_{RE} \neq c$!

Reliable startup design by multi-machine validated code, DYON

Self-consistent coupling with DYON

Key code features

- Multi-machine validated code.
 - > MAST-U, DIII-D, EAST, KSTAR, VEST
- Unique approach for model-based description of magnetic configuration.
- Minimize free parameters and reduce solution non-uniqueness.
 - Critical lesson from startup RE model validation in JET [deVries2025NF].

Regular oral talk on model validation by H.-T. Kim et al 17th Oct, 11AM

Two macroscopic populations on dual magnetic configuration

- Describe species in closed (cl) and open (op) magnetic configurations
 - The particle-conserving evolution of runaway particle density

$$\begin{split} \frac{dn_{RE}^{cl}}{dt} &= S_p^{cl} + (\gamma_{ava}^{cl,i} - \frac{1}{\tau_{RE,\perp}^{cl}}) n_{RE}^{cl} - n_{RE}^{cl} \frac{d}{dt} \log V_p^{cl}, \\ \frac{dn_{RE}^{op}}{dt} &= S_p^{op} + (\gamma_{ava}^{op,i} - \frac{1}{\tau_{RE}^{op}}) n_{RE}^{op} + \frac{V_p^{cl}}{V_p^{op}} \frac{n_{RE}^{cl}}{\tau_{RE,\perp}^{cl}} - n_{RE}^{op} \frac{d}{dt} \log V_p^{op}. \end{split}$$

The momentum-conserving evolution of runaway current density

$$\frac{dj^{cl}_{RE}}{dt} = ecS^{cl}_p\beta^{cl}_V + (\gamma^{cl}_{ava} - \frac{1}{\tau^{cl}_{RE,\perp}})j^{cl}_{RE} + j^{cl}_{RE}\frac{d}{dt}\log\beta^{cl}_{RE} - \left[j^{cl}_{RE}\frac{d}{dt}\log V^{cl}_p, \right] \quad \text{Momentum-conserving correction}$$

$$\frac{dj^{op}_{RE}}{dt} = ecS^{op}_p\beta^{op}_V + (\gamma^{op}_{ava} - \frac{1}{\tau^{op}_{RE}})j^{op}_{RE} + j^{op}_{RE}\frac{d}{dt}\log\beta^{op}_{RE} + \left[\frac{V^{cl}_p}{V^{op}_p}\frac{j^{cl}_{RE}}{\tau^{cl}_{RE,\perp}}\right] - \left[j^{op}_{RE}\frac{d}{dt}\log V^{op}_p.\right]$$

Transport from closed to open field region

 S_p : Primary generation rate γ_{ava} : Runaway avalanche growth rate

 τ_{RE} : Runaway confinement time V_n : Plasma volume

op

Self-consistent coupling with DYON

Self-consistent <u>runaway current</u> evolution

Amended circuit equations

$$\frac{dI_{p}}{dt} = \frac{1}{L_{p}} \left(V_{loop} - R_{p} (I_{p} - I_{RE}^{op} - I_{RE}^{cl}) - \frac{dL_{p}}{dt} I_{p} \right),$$

$$\frac{dI_{RE}^{cl}}{dt} = ecA^{cl}S_{p}^{cl}\beta_{V}^{cl} + I_{RE}^{cl}\frac{d}{dt}\log\beta_{RE}^{cl} + (\gamma_{ava}^{cl,j} - \frac{1}{\tau_{RE,\perp}^{cl}})I_{RE}^{cl},$$

$$\frac{dI_{RE}^{op}}{dt} = ecA^{op}S_{p}^{op}\beta_{V}^{op} + (\gamma_{ava}^{op} - \frac{1}{\tau_{RE}^{op}})I_{RE}^{op} + I_{RE}^{op}\frac{d}{dt}\log\beta_{RE}^{op} + \frac{R^{cl}}{R^{op}}\frac{I_{RE}^{cl}}{\tau_{RE,\perp}^{cl}}.$$

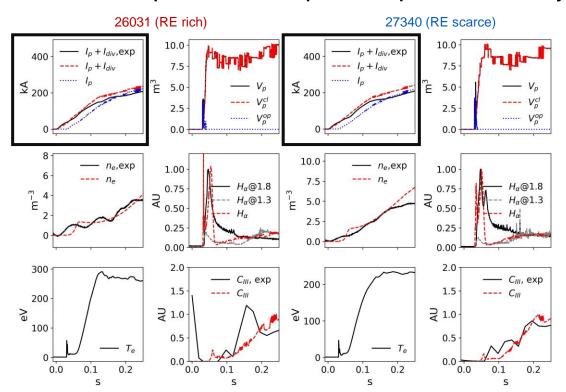
Dominant balancing

$$\begin{split} n_{RE}^{op} &\approx S_p^{op} \tau_{RE,\parallel}^{op}, \\ I_{RE}^{op} &\approx ecA^{op} S_p^{op} \beta_V^{op} \tau_{RE,\parallel}^{op}, \end{split}$$

• Self-consistent *runaway confinement* on dual magnetic configurations

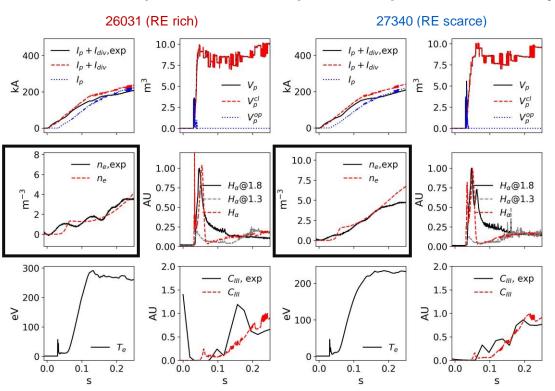
$$au_{RE,\parallel}^{op} pprox rac{< L_{op}>}{v_{RE}^{op}}$$
 DYON model $au_{RE,\perp}^{cl} pprox c rac{a_{cl}^2 ilde{b}_r^2}{2\pi R_0 v_{RE}^{cl} B_{\phi}^2}$ Runaway model

$$\begin{split} \tau_{RE}^{cl} \approx \tau_{RE,\perp}^{cl}, \\ (\tau_{RE}^{op})^{-1} \approx (\tau_{RE,\perp}^{op})^{-1} + (\tau_{RE,\parallel}^{op})^{-1} \end{split}$$

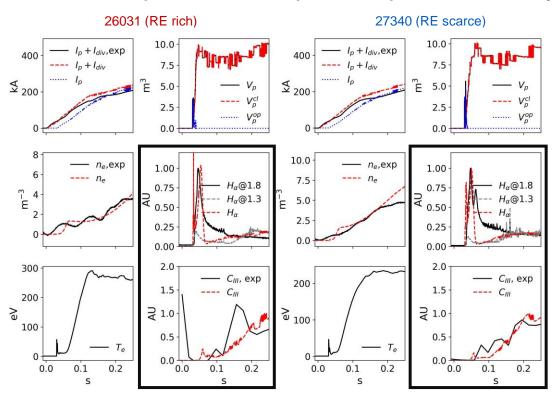


Model validation

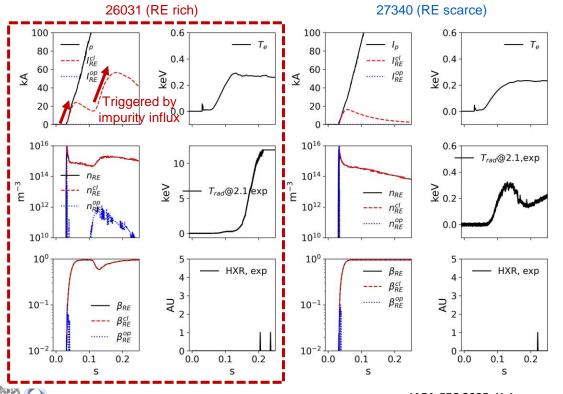
Validation in KSTAR ohmic startup


Reliable prediction of plasma parameters by coupled DYON-RE

- 1. Measured rogoski coil current agrees with synthetic signal $(I_p + I_{div})$
- 2. Measured line-averaged electron density agrees with synthetic averaged electron density (n_e)
- 3. Measured line missions agree with synthetic line emission intensity (H_{α}, C_{III}) * Indirect Te validation

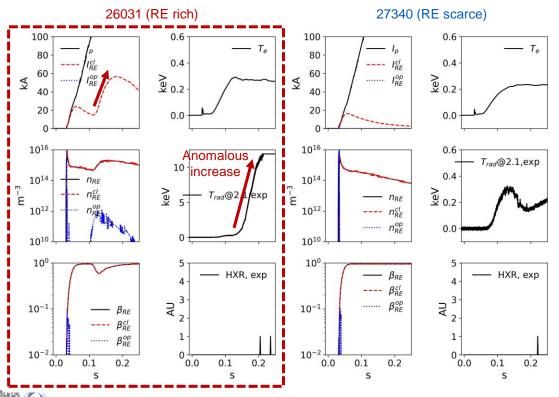

Reliable prediction of plasma parameters by coupled DYON-RE

- 1. Measured rogoski coil current agrees with synthetic signal $(I_n + I_{div})$
- 2. Measured line-averaged electron density agrees with synthetic averaged electron density (n_e)
- 3. Measured line missions agree with synthetic line emission intensity (H_{α}, C_{III}) * Indirect Te validation


Reliable prediction of plasma parameters by coupled DYON-RE

- 1. Measured rogoski coil current agrees with synthetic signal $(I_n + I_{div})$
- 2. Measured line-averaged electron density agrees with synthetic averaged electron density (n_e)
- 3. Measured line missions agree with synthetic line emission intensity (H_{α}, C_{III})
 - * Indirect Te validation

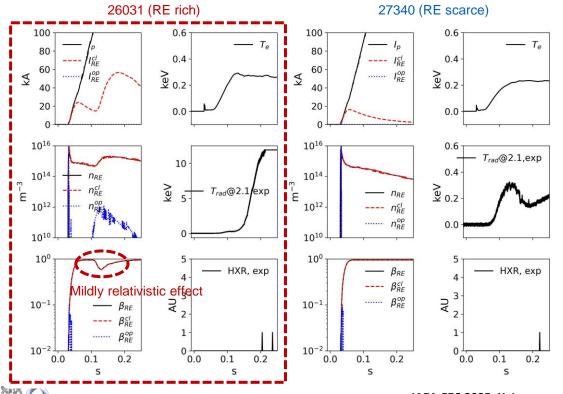
Qualitative validation of runaway signatures



In RE rich discharge,

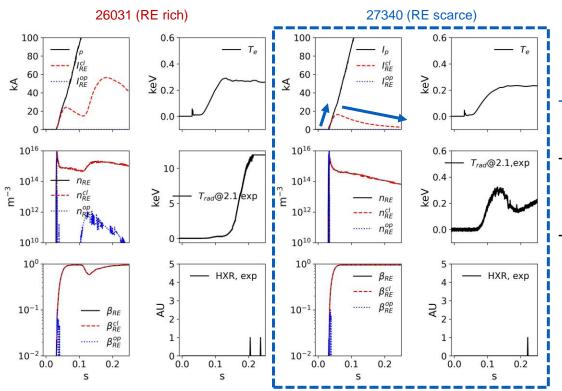
- Two-stage runaway generations are observed.
 2nd stage trigger is impurity influx.
- Strong runaway seeding (~ t=0.1 s) triggers anomalous increase in nonthermal ECE radiation (> 12 keV [exp] >> 0.25 keV [DYON]).
- During strong runaway production, mildly relativistic correction renders $\beta < 1$.
- Note that highly relativistic runaway electrons do not satisfy the resonance condition so can't explain the anomalous increase.

Qualitative validation of runaway signatures



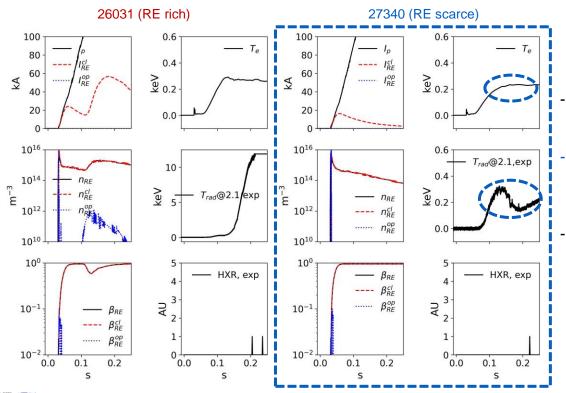
In RE rich discharge,

- Two-stage runaway generations are observed.
 2nd stage trigger is impurity influx.
- Strong runaway seeding (~ t=0.1 s) triggers anomalous increase in nonthermal ECE radiation (> 12 keV [exp] >> 0.25 keV [DYON]).
- During strong runaway production, mildly relativistic correction renders $\beta < 1$.
- Note that highly relativistic runaway electrons do not satisfy the resonance condition so can't explain the anomalous increase.

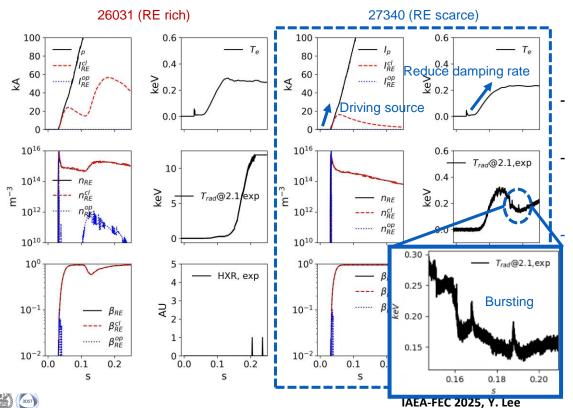

Qualitative validation of runaway signatures

In RE rich discharge,

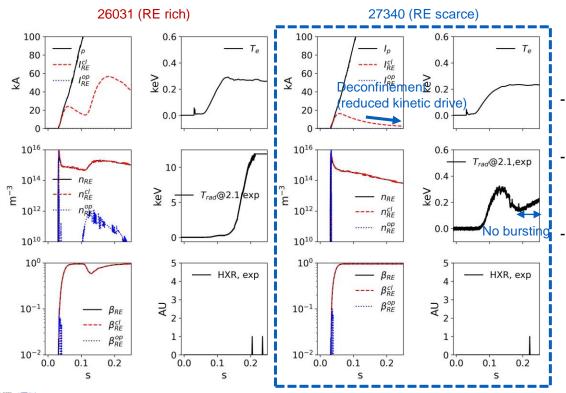
- Two-stage runaway generations are observed.
 2nd stage trigger is impurity influx.
- Strong runaway seeding (~ t=0.1 s) triggers anomalous increase in nonthermal ECE radiation (> 12 keV [exp] >> 0.25 keV [DYON]).
- During strong runaway production, mildly relativistic correction renders $\beta < 1$.
- Note that highly relativistic runaway electrons do not satisfy the resonance condition so can't explain the anomalous increase.


Qualitative validation of runaway signatures

- Strong startup runaway seed forms (~ 20 kA) and decays.
- Electron temperature (~ 0.23 keV) has a comparable order to measured ECE intensity (0.2 ~ 0.3 keV).
- DYON prediction suggested kinetic instability is triggered by runaway beam but stabilized due to their deconfinement.


Qualitative validation of runaway signatures

- Strong startup runaway seed forms (~ 20 kA) and decays.
- Electron temperature (~ 0.23 keV) has a comparable order to measured ECE intensity (0.2 ~ 0.3 keV).
- DYON prediction suggested kinetic instability is triggered by runaway beam but stabilized due to their deconfinement.


Qualitative validation of runaway signatures

- Strong startup runaway seed forms (~ 20 kA) and decays.
- Electron temperature (~ 0.23 keV) has a comparable order to measured ECE intensity $(0.2 \sim 0.3 \text{ keV}).$
 - DYON prediction suggested kinetic instability is triggered by runaway beam but stabilized due to their deconfinement.

Qualitative validation of runaway signatures

- Strong startup runaway seed forms (~ 20 kA) and decays.
- Electron temperature (~ 0.23 keV) has a comparable order to measured ECE intensity (0.2 ~ 0.3 keV).
- DYON prediction suggested kinetic instability is triggered by runaway beam but stabilized due to their deconfinement.

Conclusions

- Lay physical and engineering foundation of designing a RE-free scenario in future fusion reactors
 - Model development of reduced startup runaway model
 - > Single fluid model with non-light-speed velocity $v_{RE} \neq c$
 - No overestimation in runaway current density
 - No underestimation in runaway confinement time.
 - > Self-consistent coupling with reliable startup code DYON.
 - Model validation in KSTAR Ohmic startup
 - > In RE rich shot,
 - Timing of strong runaway seed formation coincides with that of anomalous increase in nonthermal ECE intensity.
 - > In RE scarce shot,
 - Measured ECE intensity is comparable to DYON's electron temperature.
 - Bursting characteristics in ECE intensity is consistent with formation and loss of runaway beam.

