Non-linear 3D hybrid kinetic-MHD studies of runaway electron beam termination events

H Bergström*¹, M Hoelzl¹, N Schoonheere², P. Halldestam¹, V Bandaru³, S-J Liu¹, F Wouters¹, the JOREK Team⁴ and JET Contributors⁵ ¹Max Planck Institute for Plasma Physics, Garching b.~M., ²CEA, IRFM, Saint-Paul-lez-Durance ³Indian Institute of Technology Guwahati, Assam, ⁴see author list of Ref. [1] ⁵see author list of Ref. [2]

ABSTRACT

- A self-consistent treatment of runaway electron (RE) dynamics during disruptions is difficult due to the different length and time scales involved.
- Capturing accurate transport and accounting for the mutual interaction of REs with the 3D MHD is however important for predictive simulations of future machines.
- This work presents recent advancements in RE modeling using a hybrid kinetic-MHD framework in the JOREK code.
- Finally, ongoing work aiming to obtain realistic estimates for the RE distribution during a beam termination scenario in JET is shown.

1. HYBRID KINETIC-MHD MODEL

Kinetic model has been coupled to the MHD using a full-f particle-in-cell approach. The RE is distribution given by:

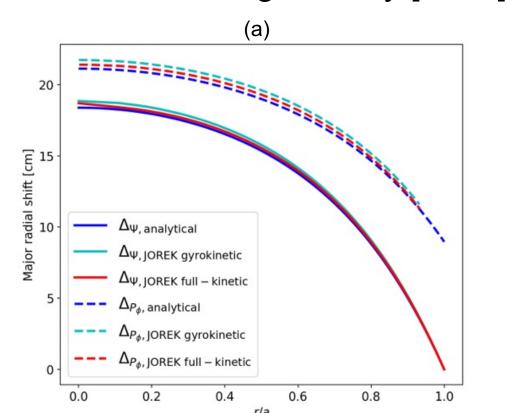
$$f_r(\mathbf{x}, \mathbf{v}, t) = \sum_{i=1}^{N_{\rm m}} w_i \delta(\mathbf{x}_i(t)) \delta(\mathbf{v}_i(t))$$

The MHD equations are modified based on the pressure coupling scheme:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = S_{\rho}$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = \mathbf{J}_{\text{tot}} \times \mathbf{B} - \nabla p - \left(\mathcal{P}_{r,\parallel} - \mathcal{P}_{r,\perp} \right) \kappa - \nabla \mathcal{P}_{r,\perp} + \mathbf{S}_{\mathbf{u}}$$

$$\frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla p + \Gamma p \nabla \cdot \mathbf{u} = (\Gamma - 1) \left(Q - \nabla \cdot \mathbf{h} + S_{p} \right)$$


$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \left(\mathbf{J}_{\text{tot}} - \mathbf{J}_{r} \right)$$

where the RE contributions are calculated as:

$$J_r = q \int d^3 v \, \boldsymbol{v} f_r, \quad \mathcal{P}_{r,\perp} = \frac{m}{2} \int d^3 v \gamma v_{\perp}^2 f_r, \quad \mathcal{P}_{r,\parallel} = m \int d^3 v \, \gamma v_{\parallel}^2 f_r$$

2. BENCHMARKS OF HYBRID MODEL

- Both full orbit and gyrokinetic models have been benchmarked in 2D and 3D configurations.
- 2D benchmark based on analytically predicted drift orbits and changes in force balance at high energies in an ITER-like geometry [9, 10]:

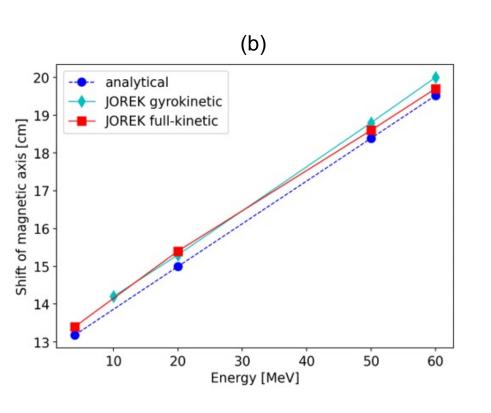


Figure 1: Minor radial profiles of the flux surface and drift orbit shifts in a plasma with 50 MeV REs (a) and the shift of the magnetic axis as a function of RE energy (b).

• 3D benchmark compares growth rate and rotation frequency of (2,1) TM instability, to those analytically predicted in Helander et al [11] along with numerical results from Liu et al [12]:

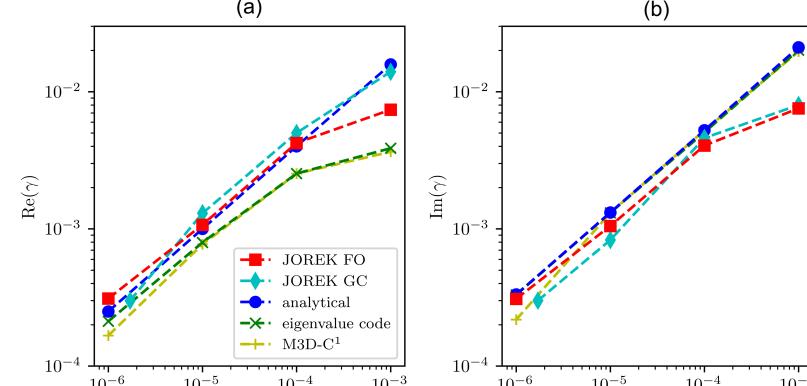


Figure 2: Growth rate (a) and rotation frequency (b) of (2,1) TM instability.

CONCLUSION

- A novel full- f particle-in-cell model for REs has been implemented and benchmarked using both full orbit and gyrokinetic markers.
- Application to beam termination scenario in JET shows interesting variations for higher RE energy distributions.
- DREAM simulations are used to estimate RE distribution throughout the experiment, strong dependence on argon density found for initial phase.
- Model developments including kinetic sources and GPU porting are underway [16, 17, 18].
- [1] M. Hoelzl et al. In: *Nuclear Fusion* 64.11 (2024), p. 112016.
- [2] J. Mailloux et al. In: Nuclear Fusion 62.4 (2022), p. 042026.
- [3] N. Isernia et al. In: *Phys. Plasmas* 30.11 (2023), p. 113901
- [4] M. Hoelzl et al. In: *J. Phys.: Conf. Ser.* 401 (2012), p. 012010
- [5] S.Q. Korving et al. In: *Phys. Plasmas* 30.4 (2023), p. 042509 [6] S.Q. Korving et al. In: *Phys. Plasmas* 31.5 (2024), p. 052504
- [7] D. Hu et al. In: *Nuclear Fusion* 63.6 (2023), p. 066008
- [8] V. Bandaru et al. In: *Phys. Plasmas* 31.8 (2024), p. 082503
- [9] V. Bandaru and M Hoelzl. In: Physics of Plasmas 30.9 (2023). [10] S-J. Liu et al. Journal of Plasma Physics (Submitted)
- [11] P. Helander et al. In: *Physics of Plasmas* 14.12 (2007), p. 122102. [12] C. Liu et al. In: *Physics of Plasmas* 27.9 (2020), p. 092507.
- [13] V. Bandaru et al. In: Plasma Physics and Controlled Fusion 63.3 (2021), p. 035024. [14] C. Reux et al. In: *Phys. Rev. Lett.* 126 (2021), p. 175001
- [15] M. Hoppe et al. In: Computer Physics Communications 268 (2021), p. 108098 [16] L. Puel et al. 2025, Joint Runaway Electron Modelling and WPTE RT03 Analysis meeting
- [17] F. Wouters. 2024, MSc Thesis, Eindhoven University of Technology.
- [18] E. Carrà. 2025, JOREK General Meeting.

non-linear 3D extended MHD code suitable for complex geometries

Some key features

- Coupling to CARIDDI and STARWALL allows for free boundary simulations accounting for conducting structures [3, 4].
- Models for neutrals and impurities using either fluid or kinetic framework, as well as SPI [5,6,7].
- > Fluid model of REs, including avalanche and nuclear sources [8].

Kinetic model of runaway electrons

- Uses particle tracing for accurate transport, retains phase space information.
- > Both gyrokinetic and full-orbit model available.
- Can be self-consistently coupled to MHD equations using particle-in-cell scheme.

3. FIRST APPLICATION: BEAM TERMINATION IN JET

First application of hybrid model based on JET benign termination case in Bandaru et al [13,

- Challenging highly non-linear scenario, acts as proof of principle.
- 10⁷ mono-energetic full orbit markers initialized with $p_{\parallel}/p_{\rm tot} = -0.99$.
- Growth of double (4,1) TM instability results in strong field line stochastization.
- Lower degree of stochastization and notably higher RE current remaining in 8 MeV scenario.

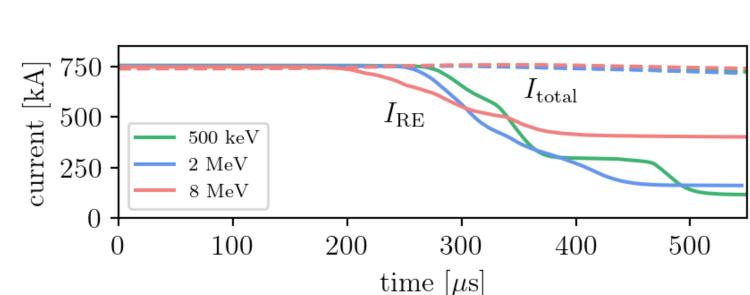


Figure 3: Evolution of total and RE current throughout the termination for simulations with different RE energy.

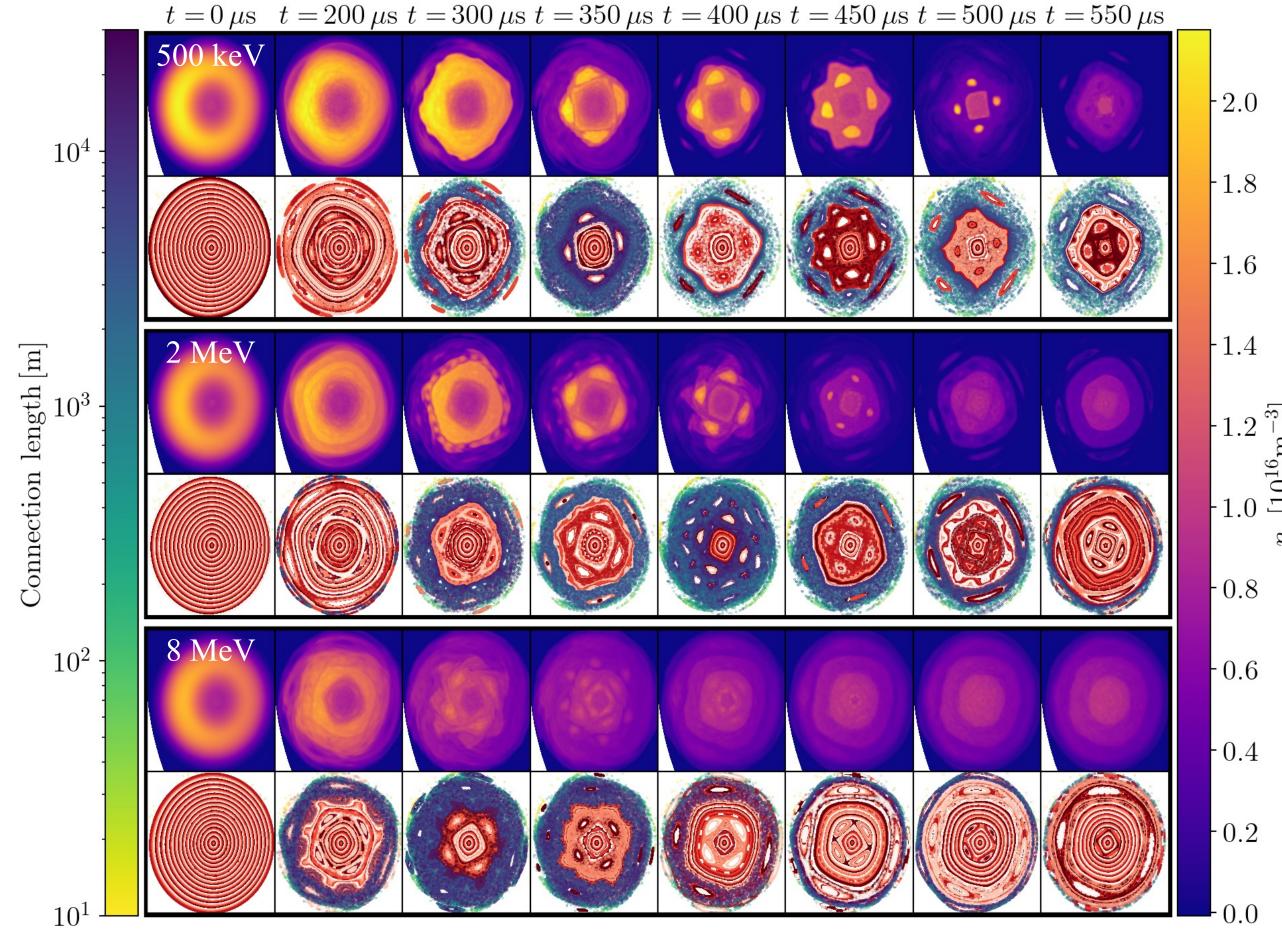


Figure 4: RE density (upper row) and Poincaré plots (lower row) analyzing the time evolution of the termination of RE beams with different energies induced by a double (4,1) TM instability.

4. TOWARDS MORE REALISTIC DISTRIBUTIONS

Idea: use 0D **DREAM** simulations to evolve f_{re} during phases with low MHD activity [15].

- Start from an avalanche distribution.
- $n_{\rm D}$ and $n_{\rm Ar}$ treated as unknowns.
- Bayesian optimization used to find best match w.r.t. I_p from experiment.
- So far, simulations of 1st phase have been carried out.
- Results found to strongly depend on $n_{\rm Ar}$, best match at ~53% assimilation.
- At optimum, mean energy decreases from ~18 MeV to ~10.8 MeV.

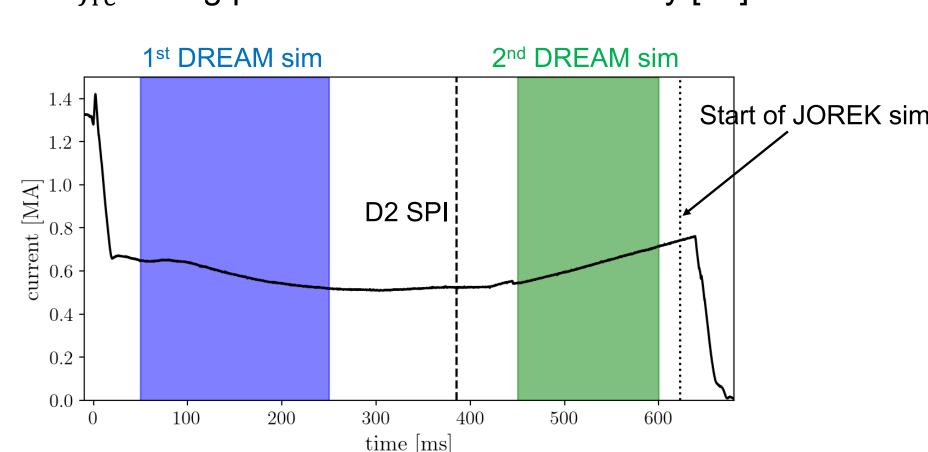


Figure 5: Total current evolution during the experiment with different simulation phases indicated.

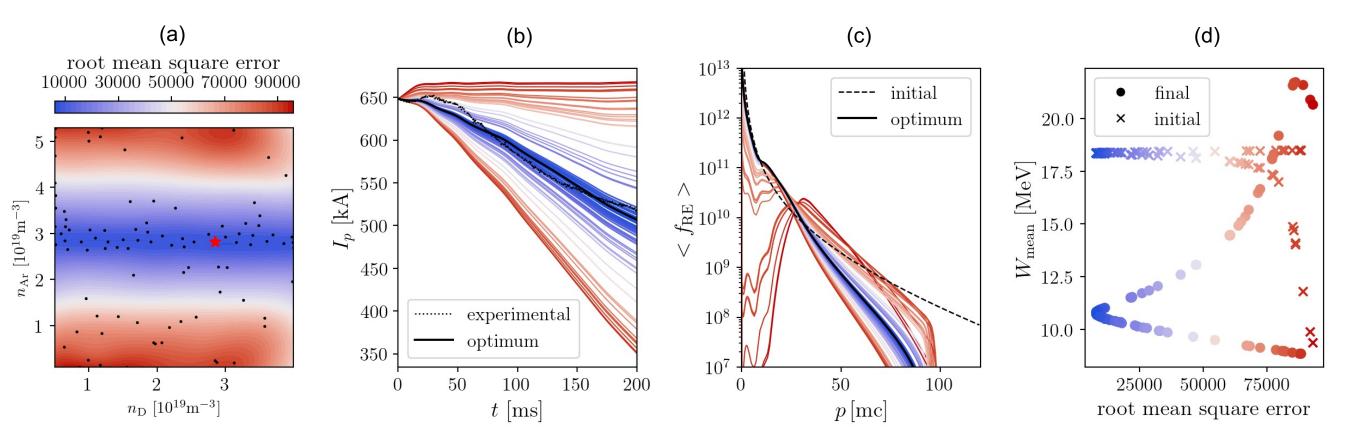


Figure 6: Results from Bayesian optimization of DREAM simulations. (a): RMSE with respect to the total current, as predicted by the Gaussian process. The same color scale is used in figures (b)-(d). (b): Total current throughout the simulations along with the experimentally measured current. (c): Pitch angle averaged RE distribution at the end of the simulation. (d): Average RE energy at the beginning and end of the simulations as a function of the RMSE.

