Non-linear 3D hybrid kinetic-MHD studies of
runaway electron beam termination events  max-pLanck-INsTITUT

FUR PLASMAPHYSIK
H Bergstrom®!, M Hoelzl', N Schoonheere?, P. Halldestam?, V Bandaru?, S-J Liu', F Wouters?', the JOREK Team* and JET Contributors®
'"Max Planck Institute for Plasma Physics, Garching b.~M., 2CEA, IRFM, Saint-Paul-lez-Durance
3Indian Institute of Technology Guwahati, Assam, 4see author list of Ref. [1] °see author list of Ref. [2]

ABSTRACT

* A self-consistent treatment of runaway electron (RE) dynamics during disruptions
Is difficult due to the different length and time scales involved.

« Capturing accurate transport and accounting for the mutual interaction of REs with
the 3D MHD is however important for predictive simulations of future machines.

 This work presents recent advancements in RE modeling using a hybrid kinetic-
MHD framework in the JOREK code.

 Finally, ongoing work aiming to obtain realistic estimates for the RE distribution
during a beam termination scenario in JET is shown.

Kinetic model has been coupled to the MHD using a full-f particle-in-cell approach.
The RE is distribution given by:

= | | 3. FIRST APPLICATION: BEAM TERMINATION IN JET

The MHD equations are modified based on the pressure coupling scheme:

First application of hybrid model based on JET benign termination case in Bandaru et al [13,
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notably higher RE current remaining in

8 MeV scenario.
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2. BENCHMARKS OF HYBRID MODEL

 Both full orbit and gyrokinetic models have been benchmarked in 2D and 3D configurations.
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- 2D benchmark based on analytically predicted drift orbits and changes in force balance at 10 [
high energies in an ITER-like geometry [9, 10]:
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Figure 1: Minor radial profiles of the flux surface and drift orbit shifts in a plasma with 50 MeV 10° 0.6
REs (a) and the shift of the magnetic axis as a function of RE energy (b).
« 3D benchmark compares growth rate and rotation frequency of (2,1) TM instability, to 0.4
those analytically predicted in Helander et al [11] along with numerical results from Liu et al
[12]: (a) (b) 0.2
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Figure 2: Growth rate (a) and rotation frequency (b) of (2,1) TM instability. " i
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« Model developments including kinetic sources and GPU porting are underway (@) b) © (@)
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