

FUSION ALPHA-PARTICLE-DRIVEN ALFVÉN EIGENMODES IN JET D-T **PLASMAS: EXPERIMENTS AND THEORY**

S.E. SHARAPOV¹, M. FITZGERALD¹, H. J. C. OLIVER¹, T. BARBERIS², B. N. BREIZMAN³, M. DREVAL⁴, R. DUMONT⁵, J. GARCIA⁵, V. GOLOBOROD'KO⁶, Ye.O. KAZAKOV⁷, D. KEELING¹, V.G. KIPTILY¹, J. MAILLOUX¹, F. PORCELLI⁸, Ž. ŠTANCAR¹, D. BANERJEE⁸, the JET CONTRIBUTORS* and the EUROFUSION TOKAMAK EXPLOITATION TEAM*¹

¹UKAEA, Culham Campus, Abingdon, Oxfordshire OX14 3DB, UK

²Princeton Plasma Physics Laboratory, Princeton, NJ, USA

³Institute for Fusion Studies, University of Texas at Austin, Austin, USA

⁴Institute of Plasma Physics, National Science Center, KIPT, Kharkiv, Ukraine

⁵CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

⁶Institute for Nuclear Research, Kiev, Ukraine

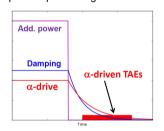
⁷Laboratory for Plasma Physics, LPP-ERM/ KMS, TEC Partner, Brussels, Belgium

⁸Department of Applied Science and Technology, Polytechnic University of Turin, Torino, Italy

*See the author list of C F Maggi et al., Nucl. Fusion 64 (2024) 112012

**See the author list of E Joffrin et al., Nucl. Fusion 64 (2024) 112019

INTRODUCTION


Excitation of Alfvén eigenmodes (AEs) by fusion-born α-particles is one of the most important problems for burning DT plasmas such as ITER [1]. Investigation of this problem has been performed during DTE2 and DTE3 campaigns on JET [2] with following dedicated scenarios for achieving α-particle excitation of AEs:

- "Beam afterglow" scenario [3], where the NBI power is switched off at peak fusion performance. The ratio between AE drive due to α-particles and the AE damping is maximized then in the time window $\tau_{SD}(\text{beam}) < t < \tau_{SD}(\alpha)$ as Fig. 1 explains;
- A novel scenario aiming at AE excitation by α-particles with bump-on-tail (BOT) distribution;
- AE excitation at the edge of plasma.

During these DTE2 and DTE3 experiments, plasma auxiliary heating by NBI only was used so that fusion-born α-particles were the only ions present in the MeV energy range in JET plasmas.

BEAM AFTERGLOW SCENARIO FOR TAE EXCITATION BY α -PARTICLES

- Experiments were first conducted before DTE2 in JET deuterium plasmas with beam afterglow [4]. ICRH was used to probe TAE stability, and modelling of TAE excitation threshold was performed [5].
- During DTE2 campaign, high DT fusion performance was obtained in the beam afterglow discharges reaching neutron rate of $R_{DT} = 4.2 \times 10^{18} \text{ s}^{-1}$ at $P_{NBI} = 26 \text{ MW}$, which correspond to $P_{FUS} = 11.8 \text{ MW}$ of fusion power and $Q = P_{FUS}/P_{NBI} = 0.45$ (discharge #99802 of hybrid scenario with safety factor q(0)~1).
- The excitation of a TAE was detected [6] in JET discharge #99946 in an internal transport barrier scenario with elevated q-profile, q(0) = 1.6. In this pulse, toroidal field $B_0 = 3.45 T$, plasma current $I_P =$ 2.9 MA, and D:T = 50:50 plasma were used resulting in $R_{\rm DT}$ = 1.6x10¹⁸ s⁻¹.
- The excited TAE had frequency of ~115 kHz (see Figure 2) and n=3, with the excitation threshold in the α-particle pressure gradient close to the marginal stability predicted from D discharges with ICRH.

1. Cartoon showing the damping and a-drive evolution in the NBI afterglow scenario [3].

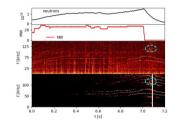


Figure 2. Mode observations during the afterglow in JET DT shot #99946 [6]. Top to bottom: Fusion neutron rate, input NBI power, Fourier spectra from interferometry and SXR. TAE appears in spectra at 7.05s at 115kHz (circled).

• Figure 3 shows the radial structure of the n=3 TAE while Figure 4 summarises all the damping effects of TAEs against α-particle drive. Radiative damping of TAEs is found to play a major role in this balance.

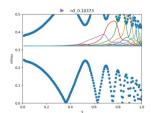


Figure 3. The computed modes with ENA+MISHKA codes: TAE with n=3 is best matching the experiment.

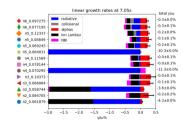


Figure 4. Left: α-particle drive and various damping effects of the relevant TAEs with frequencies close to the experimentally observed ones [6].

REVISITING TAE RADIATIVE DAMPING THEORY

- Radiative damping of TAE [7] due to emission of kinetic Alfvén waves was found to be substantial on JET and can be important in high-temperature ITER baseline scenario,
- Due to the difficulty in benchmarking numerical codes in computing the radiative damping, theory of this damping was revisited and real-space analytic calculation of the radiative damping performed [7]. This provided more transparent formalism than the pre-existing Fourier-space approach, with a more accurate numerical factor (~33% lower) in the damping → Good for benchmarking numerical codes.
- This result, which makes TAE instability more likely, is important for assessing the excitation of TAE.

EXPERIMENT ON EXCITATION OF MODES BY α-PARTICLES WITH BUMP-ON-TAIL DISTRIBUTION

- For creating α-particle BOT, a scenario was developed [8] with NBI power modulating the source of αparticles on a time scale shorter than $\tau_{SD}(\alpha)$ as Figure 5 shows.
- Five DT pulses (##99500-99503, #99627) were performed in this scenario with B/I = 3.7 T/ 2.5 MA and modulated NBI power up to ~ 10 -15 MW delivering up to $R^{DT} = 6.5 \times 10^{17} \text{ s}^{-1}$. Both D and T beams were

used and T concentration was varied from D:T = 33:67 (T-rich plasmas) to D:T = 55:45.

- Analysis with the FIDIT [9] and TRANSP [10] codes confirm that BOT α-particle distributions were achieved during some time intervals in this beam modulation scenario as Figures 5,6 show.
- A wide frequency range modes were detected with interferometry, SXR, and reflectometry as Fig.6 shows, but not in the Mirnov coils →mode numbers n were not identified.

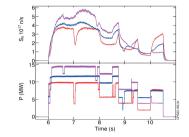


Figure 5. Top: DT neutron rates in discharges #99501 (pink), #99503 (red), #99627 (blue). Bottom: the corresponding modulated NBI power.

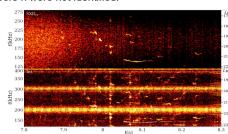


Figure 6. Top: the multiple modes going down in frequency in #99502 seen in SXR through the magnetic axis. Bottom: same modes seen with interferometry vertical line-of-sight near the magnetic axis.

 Interpretation of these modes was given in terms of kinetic Alfvén eigenmodes with their reflection points surrounding the magnetic axis as described by Rosenbluth and Rutherford [11]. In 1st order FLR approach these were computed with complex resistivity MISHKA [12] as Figs. 7, 8 show.

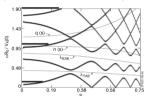


Figure7. Alfvén continuum structure for q(0)=1.22 in #99502. RR-modes marked with three horizontal thick lines exist in the potential "wells" on-axis. Here, $\lambda_{TAE} = \omega_{TAE} R_0 / V_A(0)$, $\lambda_{EAE} = \omega_{EAE} R_0 / V_A(0)$ are normalised frequencies.

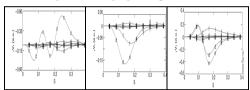


Figure 8. The wave potential variable s*V¹≈rV' as a function of $s=(\psi_P/\psi_P(a))^{1/2}\approx r/a$ for the n=5modes [13] for q(0)=1.22. The normalised frequency is $\lambda = \omega R_0 / V_A(0)$, and harmonics labelled c, d, e, f correspond to m= 9, 8, 7, 6.

AXISYMMETRIC n=0 MODES EXCITED BY ENERGY GRADIENTS OF ALPHA-PARTICLES

- Hybrid plasmas developed to explore W screening at edge in discharges with B₀ / I_P = 3.85 T/ 2.1 MA. D beam was Injected into ~20/80 D/T plasma, ICRH only starts after time of interest
- Figure 9 shows the spectrogram with the n=0 modes [13]. Frequency and amplitude of the modes are strongly modulated by Type III ELMs indicating the modes are associated with the density pedestal.
- Two possible n=0 types of the modes were investigated: Global Alfvén Eigenmode (GAE) and/or Vertical Displacement Oscillatory Mode (VDOM) [14].
- The α-particle BOT in these discharges was associated with the edge localisation of the modes, so that only α-particles with very high energies could reach the edge region.

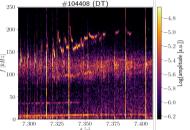
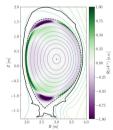



Figure 9. The n=0 modes seen in the range of 150-200 kHz with Mirnov coils.

computed HELENA+MISHKA codes.

CONCLUSIONS

- TAE excitation was observed in the afterglow scenario of JET DTE2 discharges and a satisfactory agreement between the predictive modelling and the DT experiment was found.
- TAE radiative damping theory was revisited [7] aiming at better benchmark for numerical codes.
- A significant activity of short-lived near-axis modes was observed in DTE2 scenario aiming at BOT α-particle distribution. These modes were identified as the ones predicted in [11].
- Axisymmetric n=0 modes were observed during early NBI-only phases of hybrid scenarios [13]. These were identified as likely GAM or VDOM [14] edge-localised modes excited by energy gradient of α-particle distribution at the plasma edge.

[1] A. Fasoli et al., Nucl. Fusion 47 (2007) S264;

[2] J. Mailloux et al., Nucl. Fusion 62 (2022) 042026;

[3] R. Nazikian et al., PRL 78 (1997) 2976;

[4] R. Dumont et al., Nucl. Fusion 58 (2018) 082005;

[5] M. Fitzgerald et al., Nucl. Fus. 62 (2022) 106001;

[6] M. Fitzgerald et al., Nucl. Fusion 63 (2023) 112006;

[7] B.N. Breizman, S.E. Sharapov, Fund. Plasma Physics 13 (2025) 100086;

[8] S.E. Sharapov et al., Nucl. Fusion 63 (2023) 112007;

[9] V. Yavorskij et al., Nucl. Fus. 50 (2010) 084022;

[10] Ž. Štancar et al., Nucl. Fusion 63 (2023) 126058; [11] M.N. Rosenbluth, P.H. Rutherford, Phys. Rev. Lett. 34 (1975) 1428;

[12] J.W. Connor et al., In: Proceed. of 21st EPS Conf., vol. 18B, page 616 (1994);

[13] H.J.C. Oliver et al., 2025 Phys. Rev. Lett. (submitted);

[14] F. Porcelli et al., This Conference (2025).

