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INTRODUCTION

Excitation of Alfvén eigenmodes (AEs) by fusion-born a-particles is one of the most important problems for
burning DT plasmas such as ITER [1]. Investigation of this problem has been performed during DTE2 and
DTE3 campaigns on JET [2] with following dedicated scenarios for achieving a-particle excitation of AEs:

e  “Beam afterglow” scenario [3], where the NBI power is switched off at peak fusion performance.
The ratio between AE drive due to a-particles and the AE damping is maximized then in the time
window tsp(beam)< t < 1gp(a) as Fig.1 explains;

e A novel scenario aiming at AE excitation by a-particles with bump-on-tail (BOT) distribution;

e  AE excitation at the edge of plasma.

During these DTE2 and DTE3 experiments, plasma auxiliary heating by NBI only was used so that
fusion-born a-particles were the only ions present in the MeV energy range in JET plasmas.

BEAM AFTERGLOW SCENARIO FOR TAE EXCITATION BY a-PARTICLES

® Experiments were first conducted before DTE2 in JET deuterium plasmas with beam afterglow [4].
ICRH was used to probe TAE stability, and modelling of TAE excitation threshold was performed [5].

® During DTE2 campaign, high DT fusion performance was obtained in the beam afterglow discharges
reaching neutron rate of Ror = 4.2x10" s at Pyg= 26 MW, which correspond to Prys= 11.8 MW of
fusion power and Q= Prys/ Pnei =0.45 (discharge #99802 of hybrid scenario with safety factor q(0)~1).

® The excitation of a TAE was detected [6] in JET discharge #99946 in an internal transport barrier
scenario with elevated g-profile, g(0) = 1.6. In this pulse, toroidal field B, = 3.45 T, plasma current Ip =
2.9 MA, and D:T = 50:50 plasma were used resulting in Rpr = 1.6x10"® s,

® The excited TAE had frequency of ~115 kHz (see Figure 2) and n=3, with the excitation threshold in the
a-particle pressure gradient close to the marginal stability predicted from D discharges with ICRH.
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Figure 1. Cartoon showing the Figure 2. Mode observations during the afterglow in JET

damping and a-drive evolution in the DT shot #99946 [6]. Top to bottom: Fusion neutron rate,
NBI afterglow scenario [3]. input NBI power, Fourier spectra from interferometry and
SXR. TAE appears in spectra at 7.05s at 115kHz (circled).

® Figure 3 shows the radial structure of the n=3 TAE while Figure 4 summarises all the damping effects of
TAEs against a-particle drive. Radiative damping of TAEs is found to play a major role in this balance.
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Figure 3. The computed modes with , ) . . . .
HELENA+MISHKA codes: TAE with n=3 Figure 4. Left: a-particle drlve. and various damping
is best matching the experiment effects of the relevant TAEs with frequencies close to

the experimentally observed ones [6].

REVISITING TAE RADIATIVE DAMPING THEORY

® Radiative damping of TAE [7] due to emission of kinetic Alfvén waves was found to be substantial on
JET and can be important in high-temperature ITER baseline scenario,

® Due to the difficulty in benchmarking numerical codes in computing the radiative damping, theory of this
damping was revisited and real-space analytic calculation of the radiative damping performed [7]. This
provided more transparent formalism than the pre-existing Fourier-space approach, with a more
accurate numerical factor (~33% lower) in the damping — Good for benchmarking numerical codes.

® This result, which makes TAE instability more likely, is important for assessing the excitation of TAE.
EXPERIMENT ON EXCITATION OF MODES BY a-PARTICLES WITH BUMP-ON-TAIL DISTRIBUTION

® For creating a-particle BOT, a scenario was developed [8] with NBI power modulating the source of a-
particles on a time scale shorter than 1sp(a) as Figure 5 shows.

® Five DT pulses (##99500-99503, #99627) were performed in this scenario with B/ | = 3.7 T/ 2.5 MA and
modulated NBI power up to ~ 10-15 MW delivering up to R°T = 6.5x10"” s*'. Both D and T beams were
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used and T concentration was varied from D:T = 33:67 (T-rich plasmas) to D:T = 55:45.

® Analysis with the FIDIT [9] and TRANSP [10] codes confirm that BOT a-particle distributions were
achieved during some time intervals in this beam modulation scenario as Figures 5,6 show.

® A wide frequency range modes were detected with interferometry, SXR, and reflectometry as Fig.6

shows, but not in the Mirnov coils —mode numbers n were not identified.
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Figure 5. Top: DT neutron rates in Figure 6. Top: the multiple modes going down in
discharges #99501 (pink), #99503 (red), frequency in #99502 seen in SXR through the magnetic
and #99627 (blue). Bottom: the axis. Bottom: same modes seen with interferometry

corresponding modulated NBI power. vertical line-of-sight near the magnetic axis.

® |nterpretation of these modes was given in terms of kinetic Alfvén eigenmodes with their reflection
points surrounding the magnetic axis as described by Rosenbluth and Rutherford [11]. In 15t order
FLR approach these were computed with complex resistivity MISHKA [12] as Figs. 7, 8 show.
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Figure7. Alfvén continuum structure for L function of s=(ws/ we(a))"?=r/a for the n = 5

q(0)=1.22 in #99502. RR-modes marked with .0 es [13] for q(0)=1.22. The normalised
three horizontal thick lines exist in the potential frequency is A=wRVa(0), and harmonics
“wells” on-axis. Here, Arae =wrae R/ Va(0), [apelledc, d, e, f correspond tom=9, 8, 7, 6.

Aeae=weaeRo/Va(0) are normalised frequencies.
AXISYMMETRIC n=0 MODES EXCITED BY ENERGY GRADIENTS OF ALPHA-PARTICLES

® Hybrid plasmas developed to explore W screening at edge in discharges with By / Ip = 3.85 T/ 2.1
MA. D beam was Injected into ~20/80 D/T plasma, ICRH only starts after time of interest

® Figure 9 shows the spectrogram with the n=0 modes [13]. Frequency and amplitude of the modes are
strongly modulated by Type Il ELMs indicating the modes are associated with the density pedestal.

® Two possible n=0 types of the modes were investigated: Global Alfvén Eigenmode (GAE) and/or
Vertical Displacement Oscillatory Mode (VDOM) [14].

® The a-particle BOT in these discharges was associated with the edge localisation of the modes, so that
only a-particles with very high energies could reach the edge region.

Figure 10. The computed n=0 GAE with

Figure 9. The n=0 modes seen in the HELENA+MISHKA codes.

range of 150-200 kHz with Mirnov coils.

CONCLUSIONS

e  TAE excitation was observed in the afterglow scenario of JET DTE2 discharges and a
satisfactory agreement between the predictive modelling and the DT experiment was found.

e  TAE radiative damping theory was revisited [7] aiming at better benchmark for numerical codes.

e A significant activity of short-lived near-axis modes was observed in DTE2 scenario aiming at
BOT a-particle distribution. These modes were identified as the ones predicted in [11].

e  Axisymmetric n=0 modes were observed during early NBl-only phases of hybrid scenarios [13].
These were identified as likely GAM or VDOM [14] edge-localised modes excited by energy
gradient of a-particle distribution at the plasma edge.
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