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* Incompressible shear Alfvén waves (SAWs) are deleterious to the performance of burning plasmas.

* SAWs in NBI heated plasma often exhibit a bursting state in present-day tokamaks.

* Recurrent bursting Alfvénic instabilities will lead to a rapid and violent release of stored free energy.
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* NBI-induced bursts are also routinely observed in LHD for both low and high filed discharges .
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Numerical efforts on NBl-induced bursting SAWs
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 Comprehensive simulations of NBI-induced bursts were simulated by MEGA in a
collisional slowing down time scale.

* It is revealed that resonance overlap, critical EP gradient in phase space, and multiple
mode coupling are key factors.
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Shear Alfvén Waves in ICRF heated plasmas

ICRF-induced AEs in C-Mod
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Unlike beam-driven SAWs often with bursting behavior, ICRF-induced
SAWSs, with strong velocity space diffusion, generally have steady
amplitude, pitchfork splitting state, or chaotic state.

ICRF-induced SAWs can be well explained by famous Berk-Breizman-
Pekker model based on near-marginal 1-D bump-on-tail instability,
except predicted bursting state.

Mechanism that preventing ICRF-induced SAWs being bursting could
open a new avenue for bursting-AE control in burning plasmas.
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Theoretical predicted Nonlinear States
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Kinetic-MHD hybrid code: MEGA

Bulk plasma (Fluid) Energetic particle (drift kinetic)

- E B u:Vﬁ+vE+VB,
A VAR nA — Peq ) ) * v
57 =~V (V) +vAp = peg) vi ZKL(B+p"BVXb)’
o v? . B 1
pav:—pwxv—pV(g)—Ver(_]—i)>< VE:§(E><B),
4
~V ~V(vpV - v), 1
X (vpw) + 3 (vpV - v) vg = (—uVB x b),
h€
B g.p el
ot ! o = 2nY)
5 ZreB’
L=V (pv) = (= )V v+ (= 1) 9
) b =B/B,
X [pr2 + gl/p(v ! V)2 +77j ' (j _jEQ)] + VTLA(p_peq)a B B(1 b v b
. . i = _|_ ) X ’
E=—-vxXB+n(—Je), G+ )
dU” "
W=V Xv, j Mt~ = V- (ZneE — pV B),
h
i=-VxB.  dmww— 0 [ vaZerdo= [ abre,
0

[Y. Todo & T. Sato, PoP, 1998]
- Energetic particle (drift kinetic) contribution is included in MHD momentum equation.

- Equations are solved using fourth-order Runge-Kutta and finite difference schemes in
cylindrical coordinates (R, @, Z).

- FLR effect is neglected to save simulation resource, regardless of MeV particles.
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Extended MEGA with ICRF heating

B SAW nonlinear states are determined by an interplay between SAW electric field that flattens fast ion
distribution function and relaxation processes that restore the distribution function.

B MEGA code is extended with ICRF Kkick, Coulomb collisions, minority ion source and sink.
B RF kick is based on a quasi-linear theory [Stix, NF, 1975; Murakami+, NF, 2006].

B Both RF kick and Coulomb collisions are simulated by the Monte Carlo method.

B Minority 1ons are simulated using a full-f particle-in-cell method [~0.5 billion markers].

B Sim. setup: By = 1.5T, Ry/a = 2.6m/0.9m, ny, = 3.0 X 10°m~3, T, = 8keV, "(H)/n(D) = 4%.
B A parabolic safety factor profile g(r/a) = qo + (g4 — qo) * (r/a)? with go=1.2 and q, = 3.0.
B A modelled ICRF wave electric field profile is adopted for simplicity with k; = 6 m™*.

B Multi-phase simulation: alternately run classical and hybrid simulations until a steady state.
Classical Sim.
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- P9 Classical Hybrid Classical Hybrid [EEEEEE
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EERRERRRR Small time step (slow) *Reduce computational time to 1/5!
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Achieving a realistic steady state is important
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Steady-state minority ion distribution in classical simulation is seriously overestimated.
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On-axis ICRF heatlng with Pp,=6MW
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Bursting SAWSs are observed when RF resonance layer is located at the magnetic axis [or inboard].

When RF resonance layer is located at the outboard region, only non-bursting/grassy modes are
observed.

Non-bursting case has a much higher EP beta and stronger tail ions.
Noted that nonlinear states can only be identified during the continuous hybrid simulation phase.
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MHD Kkinetic energy evolutions
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About 10% of EPs are transported from the inner to the outer region during the burst.
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Onset and end time of primary modes are similar, which confirms an interaction between
different toroidal harmonics. The decay phase of oscillatory growth for each » is pronounced.

Discrete TAEs above Alfvén continuum tips are formed for each toroidal harmonic.

There is a spatial overlap region between adjacent TAEs.
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Radially discrete TAESs are coherent
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* Discrete and non-chirping TAEs of each toroidal harmonic are destabilized by a similar group
of minority ions in terms of energy and magnetic moment.
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Synergistic effect between different toroidal harmonics @
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*  We repeated simulation at the onset of burst with including only one toroidal harmonic at a time.

* Although the burst is primarily dominated by only two toroidal harmonics (#=3 and n=4), the inclusion
of a single n alone is insufficient to induce a burst.

* However, is synergy of different toroidal harmonics really indispensable?
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Single-n induced bursting SAWSs (n=3)

Single-n simulation with n = 3 toroidal mode family: n = 3 mode is directly driven by fast particles,
while n = 0, 6,9 MHD perturbations are retained, which contribute to the TAE nonlinear saturation.
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TAEs with a single n can also trigger the burst with a longer time interval of two adjacent bursts.
Similar to the multi-n case, a series of discrete TAEs with different frequencies is formed.

Oscillatory growth of Kinetic energy results from different frequencies of inner and outer TAEs.
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Non-bursting modes during outboard heating

Kinetic Energy Evolutions Mlnorlty Hydrogen Beta
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When the RF resonance layer is located at the outboard region, only non-bursting/grassy modes are
observed, even at a high power of 18MW.

A significant number of minority ions are close to the RF resonance layer, indicating that resonant
particles interacting with SAWs also easily experience strong RF-induced velocity space diffusion.
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Non-bursting modes during outboard heating

0 0.5 10 0.5 10 0.5

* For outboard RF heating, primary TAEs of each toroidal mode show a broad structure with almost
identical frequency.

* RF-induced strong velocity space diffusion keeps scrambling resonant particles and preventing
continuous particle trapping in the radial direction, which contributes to the formation of this broad
structure with uniform mode frequency.

* Such a long-lasting broad structure will prevent the accumulation of free energy to trigger a
bursting event.
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Summary @

¢ State-of-the-art hybrid particle-in-cell simulations of ICRF-induced AEs in tokamak
plasmas are conducted, where both bursting and non-bursting AEs are reported.

¢ Bursting ICRF-induced AEs are obtained in both multi-» and single-n simulations for a
plasma with a low magnetic field B;=1.5T and an ICRF resonance layer located at the
magnetic axis or inboard side.

¢ Formation of a series of discrete [discrete in both frequency and radial position:
accumulate enough free enough before avalanche] but coherent [transport same group of
EPs determined by resonance conditions| AEs plays a pivotal role in triggering the bursting
event with a low magnetic field strength [large EP radial transport from inner to outer
region by AEs], which can release a large amount of free energy stored in the minority ion
distributions during the cascading avalanche.

¢ The results suggest that destruction of the coherent structure by scrambling resonant
particles through fast-ion phase space engineering via RF waves could be a desirable
strategy in preventing the bursting SAWs.

J. Wang | 30t IAEA-FEC, Oct. 13-18, 2025 | Chengdu, China



Thanks for your attention!
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MEGA succeeded in predicting ICRF-induced SAW in LHD

MEGA predicted ICRF-induced SAWs in LHD
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Experimental validation of ICRF-induced SAW in LHD

LHD #173912
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Schematic diagram of ICRF- and NBI-induced bursting SAWs
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They share an identical fundamental triggering mechanism: resonance overlap in phase space




Non-bursting mode at B,=3.0T

Kinetic Energy Evolutions Minority Hydrogen Beta Mode Structure

=27
J

0.3’llll|ll [ rrrrrrri
_kin_wftol

A Cimnsis Heating

n-3xis heatingE ‘ b Ug
6MW W %
' 3 {4 Qt g =
L llll!h m”l ...’IJM ‘gi(i :
100 150 200

— Ein = ‘NS tored )2
5‘ 0.1 W :K:- (2)
s, 4T Outboard heating 2 2
w3 0.05 ‘ MW %& |54
A . )
Il i -8
0 “““ll 0 1 1 1
0 50 100 150 200 2 2.5 3 35

t [ms] R [m]

> With a high magnetic field B,=3.0T, only non-bursting/grassy modes are
observed for both on-axis and outboard RF heating. [AEs remain non-bursting
under on-axis heating, even with the enhanced Py of 18 MW.]
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On-axis ICRF Heating [6MW]
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ICRF model: RF Kkick

B RF Kkick: Kick in velocity space when minority particle crosses the Doppler-shifted resonance
layer (Stix, NF, 1975; Murakami+, NF, 2006) :

Av, = 51 exp(=ing ) [E -1 (kpr) +1E-nyaCkopn)]

* RF kick is simulated by the Monte Carlo method.

* Wave-particle interaction time I = min(t,,t,) = min (\/ 2n/nw 2n(na/2)"1/3 Ai(O))

depends on the turning point position relative to the resonance layer. (I = t,: bounce tip far
away from the resonance layer; I = t,: bounce tip close to the resonance layer)

* Random variable ¢,. is the phase shift between the Larmor rotation and wave electric field.

* Left-hand polarized component of the perpendicular wave electric field E,, which rotates in the
direction of ion cyclotron motion, can effectively interact with the minority ions. A modeled E.,
profile 1s used in this work for simplicity.

* In this work, we focus on the fundamental minority 1on heating scheme (n=1).
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ICRF model: Source, Sink, Collisions

B Source: A source module is implemented to maintain minority ion concentration

B Sink: Only particle orbit loss is considered in the present model

B Collisions: Minority ion (h) velocity change from (v, v, ) to (v|'|, v ) due to collisions with
bulk ions and electrons (S)(Karney, CPR,1986; Hamamatsu+, PPCF,2007)

v
v" = v+ Avh/s ] Av)};/s’—l
v
,11/2
r h/s V1 h/S I h/sS
v, = (vl+Av +A v) +(Av,7 )

Mean value and mean square derivation required in Monte Carlo simulations:
(velocity space 1s based on a spherical coordinate (v, y,n) with Larmor phase 1)

<(Avh/5)2> _ rh/s [erf(u) ~ erf;(u)] 55t

2V u?

/
h/S> <1 n ﬂ) e [erf(u) — uerf’ ()]st

mg ) v?

2
<( 1/5) > < Al >_%5 (2_u2> eri(zu) erf;(u)] .
|

o)) o
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