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OUTLINE 

• Introduction 
 

• α-particle-driven toroidal Alfvén eigenmodes (TAEs) in the “beam afterglow” 
scenario of JET DTE2 plasmas 
 

• Revisiting TAE radiative damping theory 
 

• Modes excited in NBI modulation experiments aiming at α-particle bump-on-
tail distribution  
 

• Axisymmetric n=0 modes excited by α-particle energy gradients in JET D-T 
plasmas  
 

• Summary  
 

 

 



 

3  

 
S.E. Sharapov et al., Alpha-driven modes in JET D-T plasmas|30th IAEA FEC | 13-18 October 2025                                

INTRODUCTION 
 

Magnetic Fusion is moving now to the era of burning plasmas. The plasma self-
heating through the fusion-born α-particles (He4 nuclei of energy 3.52 MeV) is the 
most essential new part of the plasma physics. 
 
Transport properties of α-particles are of crucial importance since they will 
determine the plasma heating profiles, the plasma dilution due to the `helium ash' 
accumulation, and the power load upon the first wall. 
 
Largest uncertainty in α-particle transport is associated with possible excitation 
of Alfvén eigenmodes (AEs) that resonate with the super-Alfvenic α-population. 
 
Investigation of AEs excited by fusion α-particles was one of the aims in recent 
DTE2 and DTE3 experiments on JET  

↓ 
A very challenging task as α-pressure was only several % to  

the core plasma pressure! 
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FROM HIGH POWER DTE1 (1997) TO DTE2 & DTE3 ON JET 

 
We did not detect any α-particle-driven AEs during DTE1 campaign in 1997 [1]. 
 
For DTE2 & DTE, we developed internal diagnostics for AEs on JET up to the 
frequency range of ~500 kHz: 
 

- Interferometry2 for measuring line-integrated 𝛿𝑛𝑒; 

- Sweep-frequency reflectometry3 measuring local 𝛿𝑛𝑒(𝑅); 
- Multi-channel Soft X-Ray for line-integrated combination of 𝛿𝑇𝑒  and 𝛿𝑛𝑒 . 

 

Together with Mirnov coils measuring 𝜕(𝛿𝐵𝑃)/𝜕𝑡, these diagnostics provided a 

robust and reliable set for detecting α-particle-driven modes; 
  
We also developed a set of diagnostics for confined and lost alpha-particles [4]  
 
        [1] S.E. Sharapov et al 2008 Fusion Science and Technology 53 1022; 
          [2] S.E. Sharapov et al 2004 Phys. Rev. Lett. 93 165001; 
          [3] S. Hacquin et al 2007 Plasma Phys. Control. Fusion 49 1371; 
          [4] V.G. Kiptily et al 2024 Nucl. Fusion 64 086059.  
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GRADIENTS OF α-PARTICLE POPULATION TO CONSIDER 
 

• Growth rate γ for Alfvén eigenmode (AE) resonating with energetic particles 
depends on energy gradient, radial gradient, and anisotropy of the energetic 
particle distribution: 
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• Modes excited by different gradients impact fast particles in different ways 

and require distinct excitation and mitigation strategies. 
 

• During DTE2 & DTE3, three types of AEs were excited by α-particles:  
 

i) Toroidal Alfvén Eigenmodes excited due to the radial gradient as expected, 
 

and two unexpected types of AEs: 
 

ii) on-axis kinetic AEs excited due to the combined energy and radial gradients,  
 

iii) n=0 global AEs at the edge of plasmas excited due to the energy gradient.  
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BEAM “AFTERGLOW” SCENARIO FOR α-DRIVEN TAEs ON JET 

The “beam afterglow” (after NBI power is switched off) scenario similar to TFTR5 

 

Cartoon showing the beam damping and α-drive evolution in the NBI afterglow scenario [5].   

Major effort was made in developing this scenario first in deuterium plasmas with NBI only6   

 

[5] R. Nazikian et al 1997 Phys. Rev. Lett. 78 2976; 
[6] R.J. Dumont et al 2018 Nucl. Fusion 58 082005. 
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BEAM AFTERGLOW SCENARIO IN DTE2 PLASMA [7]  

High DT fusion performance was obtained in the beam afterglow discharges, with 
the neutron rate up to RDT = 4.2x1018 s-1 at PNBI= 26 MW, which correspond to 
PFUS= 11.8 MW of fusion power and Q = PFUS/ PNBI =0.45 (#99802). 

 
[7] M. Fitzgerald et al 2023 Nucl. Fusion 63 112006; 
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TAEs EXCITED BY α-PARTICLES IN BEAM AFTERGLOW SCENARIO7 
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ZOOM OF THE OBSERVED TAEs IN THE BEAM AFTERGLOW 
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TAEs COMPUTED WITH HELENA+MISHKA FOR THIS CASE 

  

TAE with n=3 best matching the 
experimental observations 

TAE with n=4 best matching the 
experimental observations 

Strong radiative damping was established as main stabilising effect on core-
localised TAEs7 
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TAE RADIATIVE DAMPING RATE REVISED8 
 

When TAE couples to kinetic Alfven waves with non-zero radial group velocity, 
part of TAE energy radiates away with the outgoing KAWs → “radiative 
damping” 

  

 
We developed a real-space analytic calculation of radiative damping that provided more 
transparent formalism than the pre-existing Fourier-space approach, with more accurate 
numerical factor (~33% lower) in the damping → Good for benchmarking numerical codes.  

 

[8] B.N. Breizman, S.E. Sharapov 2025 Fund. Plasma Physics 13 100086 
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CREATING α-PARTICLE BUMP-ON-TAIL VIA NBI MODULATION9 

• For TAE excitation via α-distribution energy gradient, we created bump-on-tail 
(BOT, dFα/dE >0) α-particle distribution in DTE2 pulses.  

 

• The critical question: whether a BOT distribution of α’s could shift notably 
the TAE instability zone. 

NBI only discharges were employed with the power modulation: 

 

The UNEXPECTED result: we did observe modes, BUT… not TAEs! 

 

[9] S.E. Sharapov et al 2023 Nucl. Fusion 63 112007 
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PULSES WITH D-BEAM OF INCREASING POWER LAUNCHED 
INTO T-RICH PLASMAS 

 

Top: DT neutron rates in discharges #99501 (pink), #99503 (red), and #99627 (blue). 
Bottom: the corresponding waveforms of the modulated NBI power.  
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A BUMP-ON-TAIL IN ALPHAS CONFIRMED BY TRANSP 
ANALYSIS (FINE TIME STEPS AND HIGH STATISTICS USED): 

 

Z. Stancar and J. Oliver. 
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HIGH FREQUENCY MODES WERE DETECTED IN ALL DISCHARGES 

WITHOUT EXCEPTION IN INTERFEROMETRY, SXR, REFLECTOMETRY,  

BUT NOT IN MIRNOV COILS → NO INFORMATION ON n’s. #99502: 
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SOFT X-RAY DIAGNOSTICS SHOW THAT THESE MODES 
ARE HIGHLY LOCALIZED AROUND THE MAGNETIC AXIS:   

 

The modes are seen in SXR Channel 10, but not in Channels ≥ 12 
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NO SIMILAR MODES IN D-REFERENCE DISCHARGE #100797  
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THE MODES OBSERVED ARE IDENTIFIED AS THOSE 
PREDICTED BY ROSENBLUTH AND RUTHERFORD [10] 

 

 
  

λ = 1.906 λ = 1.057 λ = 0.150 

The “Complex Resistivity” [11] MISHKA modelling: The variable s*V1 as a function of s=(ψP/ 
ψP(a))1/2 for n = 5 modes computed for q(0)=1.22. The normalised frequency is λ=ωR0/ VA(0). 
All modes are within s≈r/a=0.4. 
 

The RR-modes are found to exist over a wide range of frequencies similarly to the 
experimentally observed range. 
 

[10] M.N. Rosenbluth and P.H. Rutherford 1975 Phys. Rev. Lett. 34 1428; 
[11] J.W. Connor et al 1994 Non-ideal Effects on Toroidal Alfvén Eigenmode Stability. In: 
Proceed. of 21st EPS Conf., vol. 18B, page 616. 
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USE OF RR-MODES FOR MHD SPECTROSCOPY IN BURNING 
PLASMAS 

 

 
Alfvén continuum structure for q(0)=1.22 in #99502. RR-modes marked with three horizontal thick 

lines exist in the potential “wells” on-axis.  
 

The MISHKA modelling shows a rather restrictive range of q(0) values for RR-mode existence: 

1/ 2
(0)

m m
q

n n

+
   

In the case of, e.g., n=5 RR-mode this implies the following windows for the mode existence:  

1.4 (0) 1.5q  ;  1.2 (0) 1.3q  ;  1 (0) 1.1q   

As q(0) decreases in time, the observed temporal evolution of RR-modes makes it potentially 
possible to use the mode observations for MHD spectroscopy of q(0) and α-particles.  
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ANOTHER UNEXPECTED: AXISYMMETRIC n=0 EIGENMODES 
EXCITED BY ENERGY GRADIENTS OF ALPHA-PARTICLES12 

 
• Hybrid plasmas developed to explore W screening at edge [*]. 

 

• High power D neutral beam injection required to access screening 
conditions. 

• also generates high fusion yield! 
 

• Injected into ~20/80 D/T fuel ion mix. 
 

• High magnetic field 𝐵0 = 3.85 𝑇. Plasma current 𝐼𝑝 = 2.1 𝑀𝐴. 

 

• ICRH only starts after time of interest. 
 
[*] D. King et al., in preparation (2025), J. Hobirk et al. NF, 63 (2023) 

 
[12] H.J.C. Oliver et al 2025 Phys. Rev. Lett. (submitted). 
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THE OBSERVATIONS OF n=0 MODES 
 

• Modes appear in data from magnetic probes from 7.28 ≤  𝑡 [𝑠] ≤ 7.41. 

• Signal strong enough to measure toroidal mode numbers: 𝑛 = 0 and 𝑛 = 1. 
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SEARCH FOR THE n=0 MODE EXPLANATION 
 

Two possible n=0 types of high-frequency modes were 
investigated: Global Alfvén Eigenmode (GAE) and Vertical 
Displacement Oscillatory Mode (VDOM)13 

The codes MISHKA12 and NIMROD13 were employed for this 
study 

 
Connections to other n=0 observations14,15 are being studied 

 
[12] H.J.C. Oliver et al 2025 Phys. Rev. Lett. (submitted). 
[13] F. Porcelli et al 2025, This Conference. 
[14] Z. Chang et al 1995 Nucl. Fusion 35 1469. 
[15] D.I. Refy et al 2020, Nucl. Fusion 60 056004. 
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n=0 GAE localised at the edge12 is a possibility: 
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THE DRIVE FOR THE n=0 MODE COMES FROM dF/dE>0 FOR 
ALPHA-PARTICLES AT THE EDGE: 

 

 
 
The α-particles have sufficiently large orbit widths to access the mode location, while 
beam ions with narrower orbits cannot reach the plasma edge to damp the mode. 
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CONCLUSIONS 
 

• “Beam afterglow” scenario was developed for TAE. This scenario resulted in 
PFUS = 11.8 MW, Q=0.45. TAEs were excited by α’s ~50 ms after NBI.  

• TAE stability calculations showed a major role of the radiative damping.  
 

• The radiative damping theory of TAE was revisited for low-shear plasmas 
thus developing a benchmark case for codes computing TAEs. 
 

• The DTE2 experiments on α-particle bump-on-tail via NBI power modulation 
exhibited numerous near-axis modes in wide frequency range up to 450 kHz. 
The modes were detected in interferometry, reflectometry, and SXR. 

• These modes were identified as on-axis α-particle-driven kinetic Alfvén 
modes predicted by Rosenbluth and Rutherford [10]. 
 

• Axisymmetric n=0 modes driven by positive energy gradients of α’s were 
observed in JET DT hybrid plasmas with NBI. 

• These 𝑛=0 modes were identified as GAEs at the edge. 

• Similar modes excited in burning plasmas may induce energy diffusion in 
phase space thus enhancing losses of α’s near trapped-passing boundary or 
the separatrix. 


