

# Advancing Fueling for Future D-T Fusion: Innovations in SMBI Technology and Physics-Based Fueling Strategies for Tritium

G.L. Xiao<sup>1</sup>, Y.R. Zhu<sup>1</sup>, Y.Q. Shen<sup>1</sup>, C.Y. Wang<sup>1</sup>, K. Xu<sup>1</sup>, J. Yin<sup>1</sup>, Y. Zhou<sup>1</sup>, A.S. Liang<sup>1</sup>, D.M. Fan<sup>1</sup>, H.L. Du<sup>1</sup>, G.Q. Xue<sup>1</sup>, C.Y. Chen<sup>1</sup>, X.L. Zou<sup>2</sup>, W.L. Zhong<sup>1</sup>

Email: xiaogl@swip.ac.cn

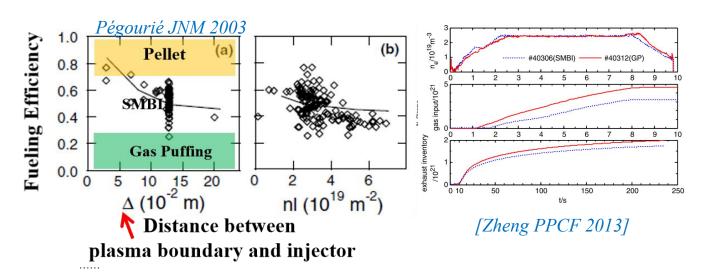
1 Southwestern institute of physics, Chengdu, China
2 CEA, IRFM, St Paul-lez-Durance, France

## **Outline**



- **■** Background
- **■** Improvements of SMBI techniques
- **■** Strategy for fueling via SMBI
- Heat load control with SMBI
- Summary

## **Background**




#### ■ SMBI stands as the leading candidate for T₂ fueling at present

Supersonic molecular beam injection (SMBI) was first introduced into the fusion field as a fueling technology on HL-1 and has been applied in more than a dozen fusion devices [G.L.Xiao RMPP 2023]

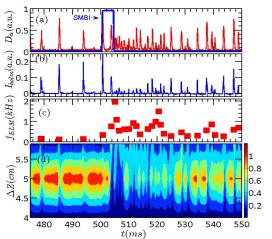
| Backgrou<br>Expansion fa                         | und pressure P <sub>b</sub> | pressure P <sub>b</sub> Barrel shock M>1 Mack |      |  |
|--------------------------------------------------|-----------------------------|-----------------------------------------------|------|--|
| M=1                                              | Zone of si<br>M>>:          | ilence disl                                   | k    |  |
| P <sub>0</sub> T <sub>0</sub> M<<1<br>Stagnation | fective dista               | nce X <sub>M</sub>                            | Flow |  |

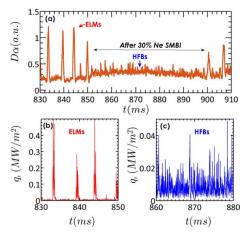
| SMBI                                           | Gas puffing                               |
|------------------------------------------------|-------------------------------------------|
| higher speed,<br>higher fueling efficiency     | slower speed,<br>lower fueling efficiency |
| directivity                                    | low directivity                           |
| lower recycling, supports long-pulse operation | higher recycling                          |

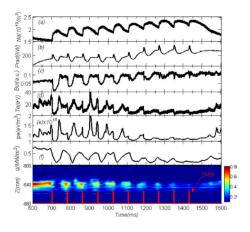


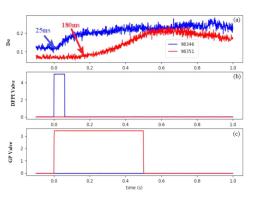
#### **Background**




#### ■ SMBI offers a significant benefit for heat load control


#### ELM control with SMBI


- ✓ ELM mitigation by fueling SMBI first demonstrated in HL-2 [Xiao NF 2012], then applied in EAST and KSTAR[Zou IAEA 2012, Xiao NF 2014, Lee PoP 2015]
- ✓ ELM suppression with impurity (or mixture) SMBI on HL-2/3 [Zhong NF 2019] and EAST [Cao PST 2025]


#### Divertor detachment with SMBI

- ✓ Similar to GP, SMBI at midplane is applied to reduce the divertor heat on HL-2[Yan NF 2010, Gao JNM 2017] and detachment experiment on EAST [Yuan FED 2020].
- ✓ SMBI directly installed in divertor can has good capacity, implemented on HL-2/3 and EAST [Xiao, AAPPS-DPP 2021, Cao FED 2022]









## Challenges and solutions





#### Challenges

- $\square$  low pressure for  $T_2$  fueling
  - ✓ SMB distribution control
  - ✓ convergent fuel
  - ✓ targeted plasma fueling
  - ✓ fueling efficiency
- Phigh heat load control
  - ✓ time response
  - ✓ enhanced capacity

## SMBI application

#### **Solutions**

- **□** techique improvements
  - ✓ AI based distribution prediction
  - ✓ injector optimization
  - ✓ Multi-phase SMBI
  - ✓ Vector SMBI
- **□** experimental fueling strategy
- □ divertor SMBI for heat control

## **Outline**



- Background
- **■** Improvements of SMBI techniques
- **■** Strategy for fueling via SMBI
- Heat load control with SMBI
- **Summary**

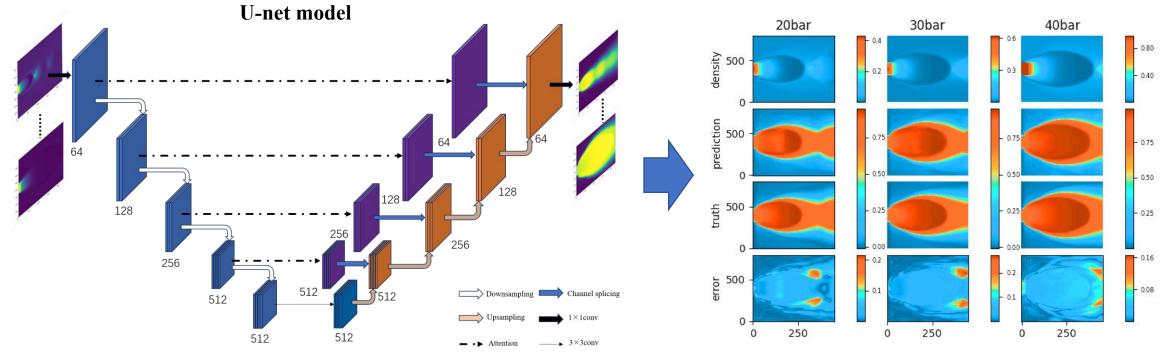
## SMBI testing platform and diagnostic systems



■ A offline SMBI testing platform with comprehensive diagnostic systems was established

#### **Offline SMBI testing platform**

$$>5 \times 10^{-5} \text{ Pa}$$
,  $d_{\text{max}} = 0.5 \text{ m}$ , L = 2.2 m

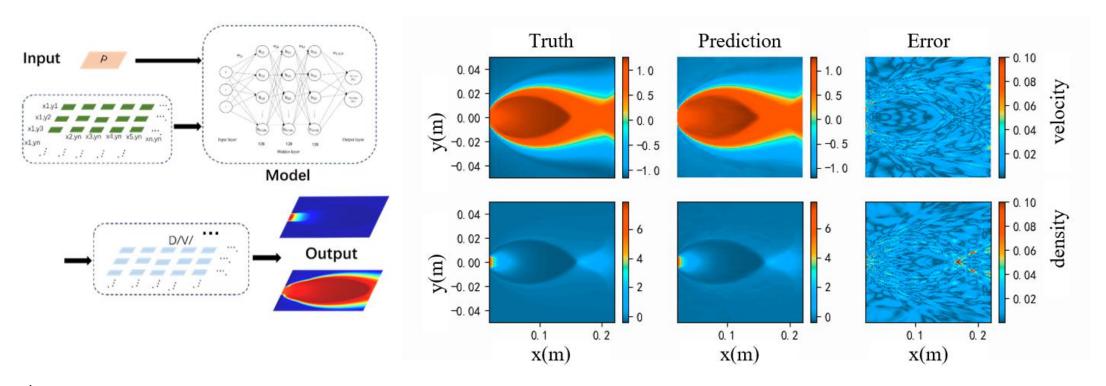



| Diagnostics                 | Parameters                 | Measurements                                                                              |
|-----------------------------|----------------------------|-------------------------------------------------------------------------------------------|
| Schlieren<br>system         | Beam structure,<br>density | M>>1                                                                                      |
| Glow discharge scanning LPs | Beam structure, velocity   |                                                                                           |
| Laser Rayleigh scattering   | Scale of cluster           | 500<br>400<br>(a) 300<br>500<br>100<br>100<br>200<br>100<br>200<br>100<br>200<br>100<br>1 |
| Laser induced fluorescence  | Atom density, velocity     | D 0.2 D 100 100 100 100 100 100 100 100 100 1                                             |

## AI-based SMBI velocity distribution



- $\square$  Obtain velocity distribution from density  $[\rho(x,y) \rightarrow \nu(x,y)]$  via U-net deep learning model
  - ✓ Simulation data:  $\rho(x,y) \& v(x,y)$ ;
  - $\checkmark$  Experimental testing data:  $\rho(x,y)$  (schlieren system) & v(x,y) (GD & langmiur probes)

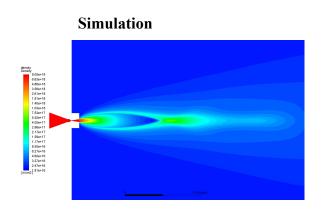



- [Xu K. et al, China Sci: Tech. sci, 2025]
- **High Generalization Capability** ✓: Accurately predicts unseen data.
- Optimal Architecture  $\square$ : U-net + attention @ boundary  $\rightarrow$  superior beam analysis

## AI-based SMBI distribution prediction



- Realized > 1000× faster prediction of SMB distribution aiming for real-time control of plasma profiles
  - $\triangleright$  **Key Assumption:** Beam distribution is governed only by gas source pressure  $P_{SMBI}$
  - ✓ **Fixed:** Injector geometry (d, L,  $\theta$ ) & background pressure. **Sole variable:**  $P_{SMBI}$  or  $P_{\theta}$




- ✓ **Baseline:** Surpasses traditional fluid simulation and beam image measurement
- ✓ **Speed:** Millisecond-level beam distribution prediction for real-time control

## SMB parameter dependance



#### ■ Parametric dependance of SMB characteristics on injector and working condition





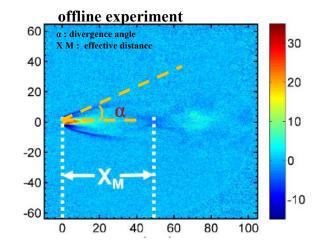
L: Length of the expansion section

 $\theta$ : cone angle

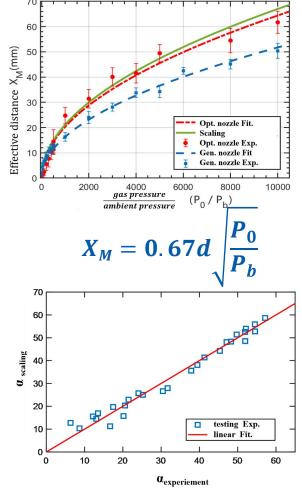
d: diameter of nozzle

P<sub>0</sub>: source pressure of SMBI

P<sub>b</sub>: pressure of the background at oulet




#### **\**


#### Beam characteristic parameters:

 $X_{M}$ : Length of silent zone; effective distance

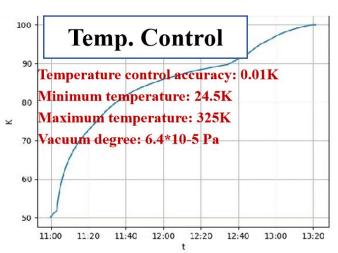
**α:** Half of the divergence angle

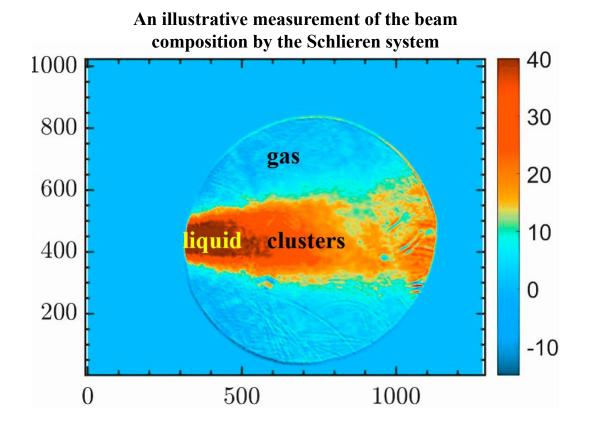


Optimized injectors obtained for effective fueling



$$\alpha_{scaling} \propto d^{-0.15} \times L^{-0.82} \times \theta^{-0.83} \times P_{\theta}^{-0.21} \times P_{b}^{-0.12}$$


## Multi-phase SMB injection technology




#### ■ Precise control of injected components via gas source temperature

- ✓ Approches: Adjusting gas source temperature (also the pressure)
- ✓ Regulates component injection from gas, cluster, to liquid phases and their mixing.



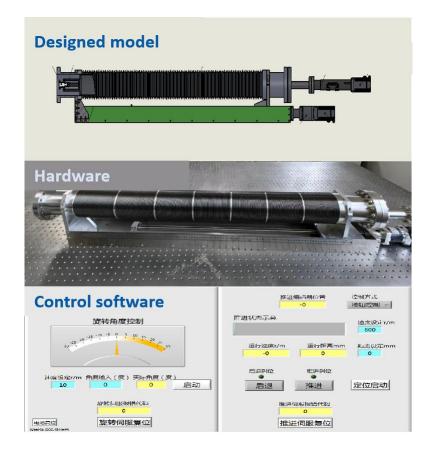


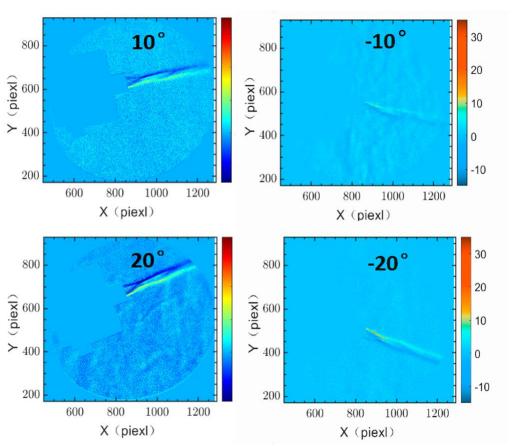


## Vector injection technology



- Vector injection SMB system: flexible beam steering before reaching plasma edge
  - **Capabilities:** precise control of injection position and angle


#### **Adjustment Ranges:**


✓ Radial Position:

0 - 0.66 m

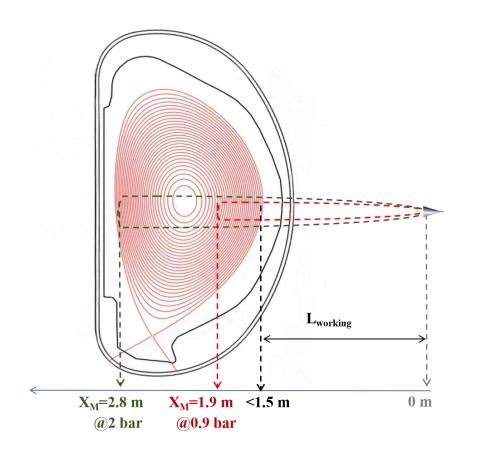
✓ Poloidal/Toroidal

Angle: ±20°





## **Outline**




- Background
- **■** Improvements of SMBI techniques
- Strategy for fueling via SMBI
- Heat load control with SMBI
- Summary

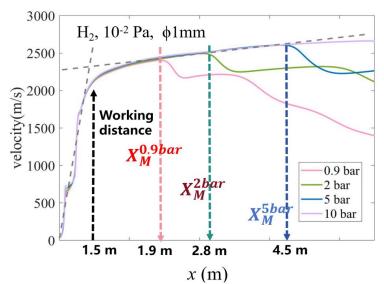
## **Maximized SMB velocity**

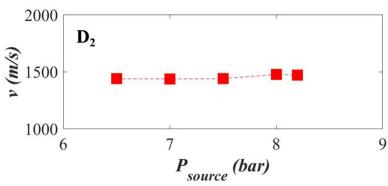


- Simulation and experiments: the beam velocity is independent of pressure, which primarily affects density
- ✓ Ideal design SMB nozzle allows adiabatic expansion  $\rightarrow v_{max} \propto \sqrt{T_0}$  ( $\gamma$ , M constant)



#### > In fluent simulation:


$$X_{eff}$$
 (0.9 bar) >  $L_{working}$   
when:  $L_{working} = 1.5 \text{ m}$   
 $\Rightarrow v_{H2} = 2100 \text{ m/s}$   
 $\Rightarrow v_{D2} = 1500 \text{ m/s}$ 

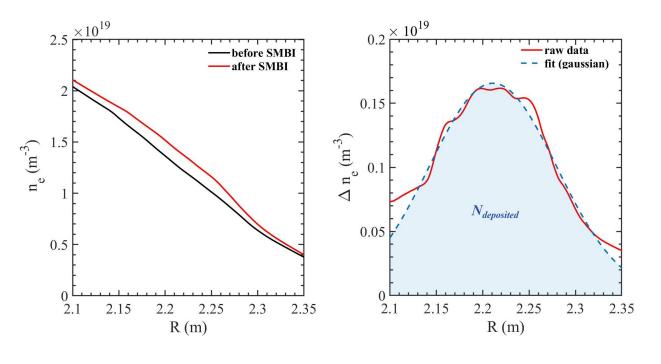

> In tokamak expriements:

$$L_{\text{working}} = d(\text{plasma, injector})$$

$$\Delta t = t_{\text{D}\alpha,\text{onset}} - t_{\text{SMBI,start}}$$

$$\Rightarrow v = \text{slope} (L_{\text{working}}, \Delta t)$$






■ Fueling analysis prioritize how SMB density distribution shapes edge plasma profiles

## Fueling efficiency analysis method



■ Localized analysis of short-time density distributions from microwave reflectometers

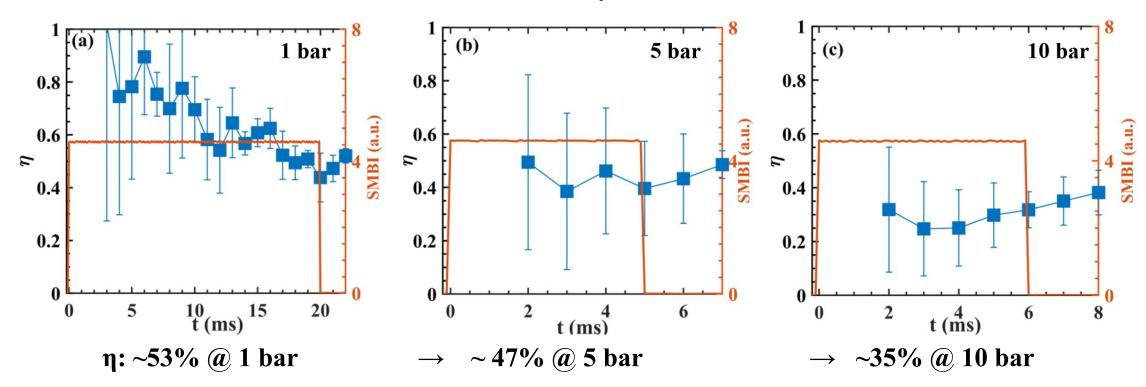


- $ightharpoonup MR: \Delta n_e = n_{e,after}(r) n_{e,before}(r)$
- > Local Deposition (Transport Neglected)

$$\Delta n_e \rightarrow Gaussian Fit \rightarrow N_{deposited}$$

 $ightharpoonup N_{injected}(P_{SMBI}, t_{SMBI})$ : offline calibrated, linear relation for SMBI valve)

#### **Fueling efficiency:**

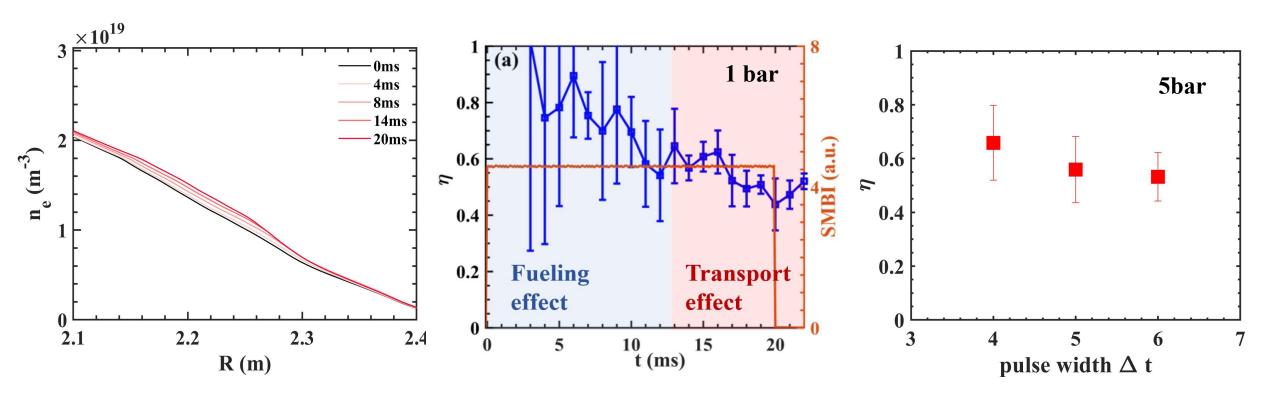

$$\eta = N_{deposited} / N_{injected}$$

## Effect of gas pressure on fueling efficiency



- **Fueling efficiency**  $\eta$  decreases with increasing pulse pressure:
  - ✓ Fueling experiments with SMBI pressure scan at fixed parameters:

$$n_e = 2.4 \times 10^{19} \,\mathrm{m}^{-3}, \, b_t = 1.65 \,\mathrm{T}, \, I_p = 0.5 \,\mathrm{MA}, \, P_{SMBI} \sim (1 - 10 \,\mathrm{bar})$$




■ The use of low-pressure SMB is recommended, as it enables higher fueling efficiency while complying with tritium safety protocols.

## Effect of pulse width on fueling efficiency



- $\blacksquare$  Fueling efficiency η decreases with increasing pulse width
  - ✓ Analysis via single-pulse temporal evolution and multi-pulse width comparison



■ The use of short-pulsed, high-frequency SMBI is advised over long-pulsed SMBI for higher fueling efficiency.

#### **Turbulence behavior**

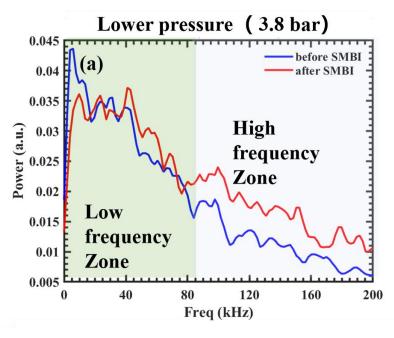


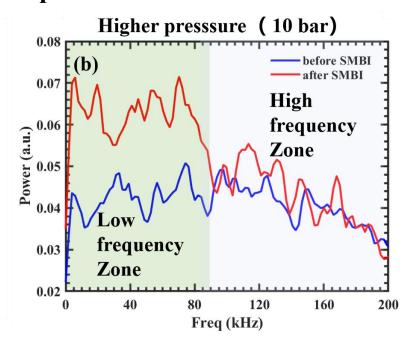
Higher turbulence intensity and scale for larger SMBI gas pressure

#### turbulence intensity

## DBS@46GHz turbulence intensity increment (a.u.) Larde pressure medium pressure

10


t (ms)


1 bar

5 bar

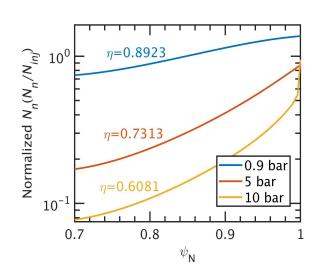
15

#### turbulence spectrum

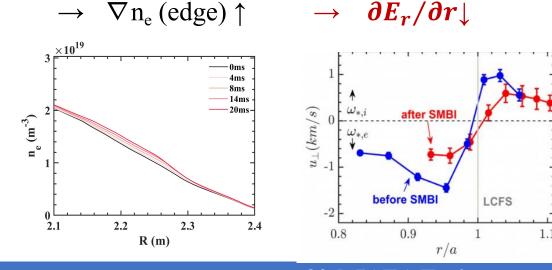


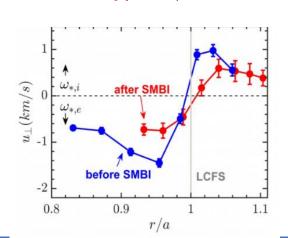


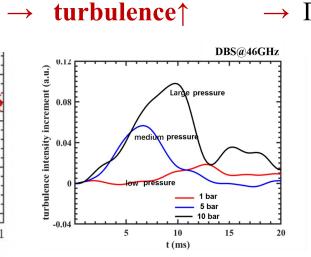
**Correlation:**  $P_{SMBI} \uparrow \Rightarrow \Delta I_{turb} \uparrow \text{ (confirmed at fixed channel)}$ 

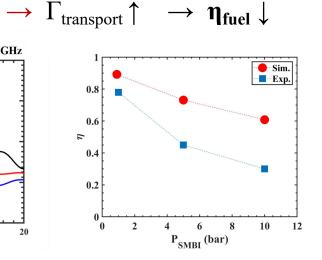

20

**Spectral Analysis:**  $P_{SMBI} \uparrow \Rightarrow f_{dominant}$ : High frequency zone  $\rightarrow$  Low frequency zone (large scale)


## Plausible physical process



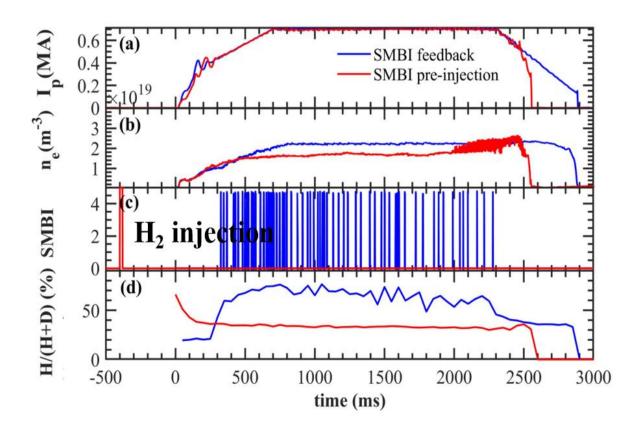


- **BOUT++ simulation:** 
  - **Key Assumptions:** 
    - $\checkmark$  Constant beam velocity across all  $P_{SMBI}$  cases
    - ✓ All deposited neutral particles are retained in the plasma
  - ightharpoonup Low  $P_{SMBI} \rightarrow high P_{SMBI}$ : local  $\nabla n_e$  steep  $\uparrow \Rightarrow \Gamma_{conv} \uparrow \Rightarrow \eta \downarrow$ 
    - $\checkmark$   $\eta$ : 89.2% @ 0.9 bar  $\rightarrow$  73.1% @ 5 bar  $\rightarrow$  60.8% @10 bar




**Plausible physical process:**  $P_{SMBI} \uparrow \Rightarrow n_{SMB} \uparrow (t_{SMBI}) \rightarrow$ 










## Timing for HD ratio control



■ SMBI enables efficient H-D ratio control, with pre-injection providing further enhancement.



- > For injection timing
- ✓ Feedback SMBI:

Higher H<sub>2</sub> consumption

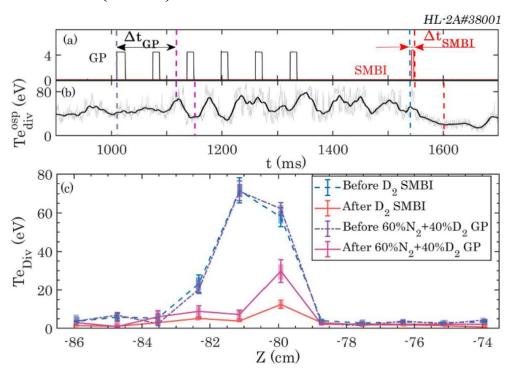
✓ Pre-injection SMBI:

Requires only 25% of the H<sub>2</sub>

■ The pre-injection of T<sub>2</sub> is recommended, with the option to follow with a combined D/T feedback

## **Outline**




- Background
- **■** Improvements of SMBI techniques
- **■** Strategy for fueling via SMBI
- Heat load control with SMBI
- Summary

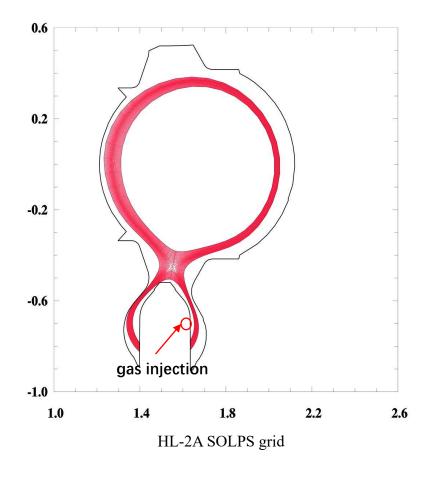
## Comparison of heat load control with SMB and GP

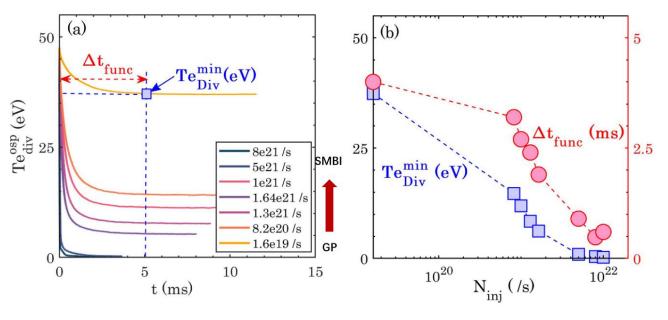


#### □ Divertor SMBI is more effective than GP: faster time response, stronger heat mitigation effects

✓ Offline testing experiments show SMBI particles reach the divertor plasma in 2.7ms — 20 times faster than GP (50ms) over a 3-meter distance.




|                          | SMBI    | GP                                         |
|--------------------------|---------|--------------------------------------------|
| Gas types                | $D_2$   | 60% N <sub>2</sub> + 40%<br>D <sub>2</sub> |
| injection<br>ratio       | 2e22 /s | 4e21 /s                                    |
| response time (velocity) | 9 ms    | 112 ms                                     |
| Te <sup>OST</sup>        | 9 eV    | 25eV                                       |

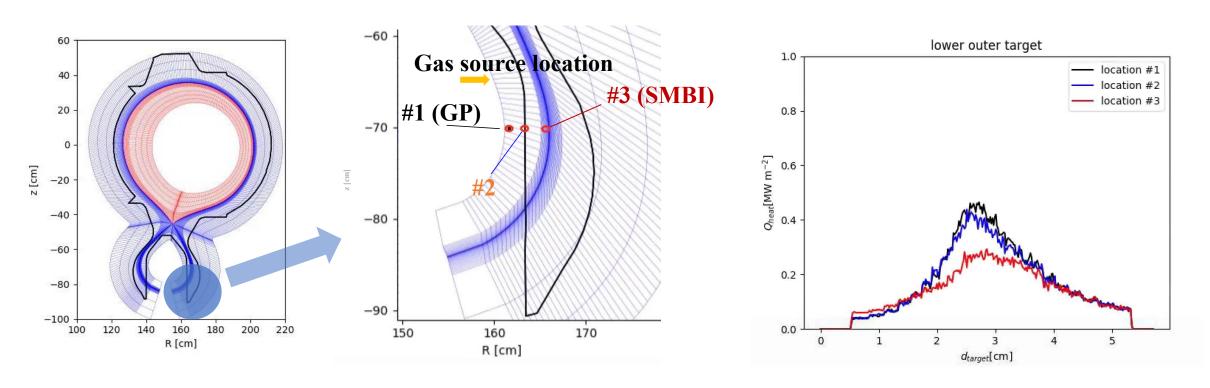

■ Plasma experiments indicate particle injection rate and velocity as critical factors for heat load control

## Particle injection rate effect simulation



#### □ SOLPS results: a higher injection rate significantly enhances and accelerates heat load mitigation






- > Simulation results indicate that with increasing injection rate:
  - ✓ strong target plate temperature drops.
  - ✓ control effect decay time shortens.
- > Both trends are in agreement with experimental data.
- □ Sufficient instantaneous particle flux control is adviced for enhanced, rapid heat load control

## Particle velocity (deposit location) effect



- ☐ The different neutral particle deposition depths caused by different particle velocity in EMC3-EIRENE based on experimental data
  - ✓ Mid-plane results suggests: Higher velocity  $\rightarrow$  Deeper deposition



■ Superior SMBI divertor heat load control via deeper, velocity-driven penetration

## **Outline**



- Background
- **■** Improvements of SMBI techniques
- **■** Strategy for fueling via SMBI
- Heat load control with SMBI
- **■** Summary

## **Summary**



#### **■**Technology Development

- ➤ Integrated Test Platform: Established a comprehensive SMBI test platform, integrating diagnostics including Schlieren, glow discharge, scanning probe, and laser Rayleigh scattering/induced fluorescence systems.
- ➤ AI-Powered Analysis: AI models enable integrated analysis of SMBI velocity distribution and rapid prediction of SMBI beam distribution including density and velocity.
- Advanced Injection Systems: The vector and multiphase molecular beam injection systems provide enhanced support for improving supersonic beam directivity.

#### **■**Strategy for experiments

- ➤ Fueling Strategy: Experimental and simulation results confirm that low-pressure, short-pulse SMBI is advantageous for higher fueling efficiency, and pre-injection is better for DT ratio control.
- > Superior Heat Load Control: The higher injection rate and particle velocity of SMB offers better heat load control compared to conventional gas puffing, presenting a new approach for optimizing radiative divertor performance.