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❑ Nonlinear gyrokinetic simulations with ORB5 code demonstrate clear reduction in 
the heat flux for both the bulk ions and the electrons at 𝜷𝒆 = 𝟎. 𝟏% in the 
presence of energetic particles

❑ Zonal State becomes more global as plasma 𝛽 is increased. 𝜷𝒆 = 𝟎. 𝟐𝟒% Flute-
like and meso-scale structures emerge. Overall transport deteriorates.

❑ Meso-scale phenomena, such as kinetic Alfvén wave propagation, need to 

be captured for a correct description of the plasma dynamics

❑ Energetic particle workflow is fully integrated in IMAS [8,21,22]

CONCLUSIONS AND DISCUSSIONS

HIGHLIGHTS CROSS-SCALE COUPLINGS IN ITG PLASMA TURBULENCE
➔ A. Könies et al. P6-3470

❑ This study reviews the role of phase-space zonal structures (PSZS) in burning 
plasmas, illustrating their evolution due to Alfvénic fluctuations using synthetic 
diagnostics with HMGC [6], GTC [16], and ORB5 [7] codes.

❑ The presented work demonstrates the existence of an overarching and unified 

theoretical framework for the self-consistent description of fluctuation spectra and 

corresponding transport in reactor-relevant fusion plasmas.

❑ The results validate the ATEP [8] code for simulating distribution function 
evolution in realistic tokamak conditions, including sources and collisions.

❑ The integration of the ATEP workflow into the ITER IMAS system is complete, and 
applications to realistic cases of practical interest are in progress.

BURNING PLASMAS AND PHASE SPACE TRANSPORT
❑ Reactor-relevant burning plasmas are complex, self-organized systems in which 

energetic particles (EPs) play a crucial role in processes underlying cross-scale 
couplings. [1-3]

❑ The phase-space zonal structures (PSZS) depend solely on actions (invariants of 
motion in a nearly integrable Hamiltonian system)

❑ The PSZS concept generalizes the local Maxwellian equilibrium, and zonal state 
evolution equations allow to simulate transport in burning plasmas on long times 
[4,5] 

❑ ATEP code [8] solves zonal state evolution in realistic tokamak conditions with 
various levels of approximations and is fully consistent with ORB5 nonlinear 
gyrokinetic code results.

❑ Including thermal component is crucial [14] and enables description of phase
transitions in zonal state evolution [S.J. Wang et al. PRL 2024, ITB by ITG] [15]

❑ Proper nonlinear equilibrium
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❑ Core plasma also plays a crucial role in 
determining the properties of the zonal state

❑ Reversed shear Alfvén eigenmodes (RSAE) [16]:

➔ contrary to common wisdom 

➢ zonal flow has negligible effect on EP 
resonance detuning (shearing)

➢ zonal e.m. fields enhance the EP drive via 
phase space zonal structures

➢ zonal e.m. fields are dominated by zonal
current

➢ saturation takes place via downward
frequency shift and enhanced damping 
due to core plasma effects (ongoing work) 

ATEP-3D code and EP Workflow

Computed by LIGKA Using EP Workflow

❑  This work demonstrates a comprehensive theoretical framework for the self-
consistent modeling of fluctuation spectra and transport in reactor fusion plasmas.
❑ Verification efforts, including comparisons between ATEP-3D [8,21,22] and ORB5 

[7], demonstrate a good level of consistency in simulating phase-space fluxes and 
zonal structures. These results validate the numerical tools and the underlying 
theoretical approach, with the inclusion of source and collision terms.
❑ The ATEP code has been integrated into the ITER IMAS system, enabling its use for 

predictive modeling in ITER [22].
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Initial (as given by NEMO/SPOT) and final state after evolving the PSZS 

transport equation for 700ms (1000 time steps) with constant-amplitude n=13 

TAE with B/B = 10-5

ZONAL STATE BY RSAE IN GTC SIMULATIONS
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