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Challenges in turbulence suppression and real-time Control 1
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❑ Efficient attainment of a high triple product requires suppression of 
turbulence-driven (anomalous) transport.

❑ Transport Characteristics
Tokamaks

• Transport is dominated by turbulence
→ Relatively well understood

Stellarators / Heliotrons
• Neoclassical (NC) transport is inherently larger

→ Can be mitigated through optimization
• Anomalous transport still plays an important role

→ Turbulent transition has recently been discovered in LHD

❑ Real-time control
• Extensively implemented for:

• Plasma equilibrium control
• ELM suppression
• etc.

• For turbulence suppression:
• IPD reduces core turbulence
• Active feedback control to optimize for anomalous transport not yet 

demonstrated
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Large Helical Device (LHD)

K. Tanaka+ RSI2008, 
T. Kinoshita+ JINST2020 2023
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Turbulence transition between ITG and RI 3
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❑ Turbulence transitions between ITG and resistive 
interchange (RI) modes

❑ When turbulence transitions:
• Turbulence and anomalous transport are minimized
• Ion temperature reaches a maximum
→ Efficient confinement is achieved

❑ This study focuses on turbulence transitions and attempts 
operations that minimize turbulence.

GKV two-fluid MHD

Experiment
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Turbulence suppression is not determined by density alone 4
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❑ Turbulence transition condition 
= Turbulence Suppression Condition (TSC)

❑ Operating around TSC → optimized anomalous transport

❑ TSC varies with heating (even for the same magnetic 
configuration)

Higher heating power
↓

↓
ITG ⇄ RI transition density shifts higher

TSC

TSC

TSC

NBI#2#3

ECRH

NBI#1#2#3

heating 
power

Collisionality ↓ → ITG  ↑ weak stabilization effect
Resistivity ↓ → RI ↓  weak driving force

Temperature ↑



Determination of TSC using SVM
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e-dia~RI

i-dia~ITG

Y. Igarashi+ JPSJ2018, T. Yokoyama+ JFE2020

a way to find a boundary that separates 
classes

❑ TSC is not uniquely determined by the magnetic configuration

❑ Exhaustive-search SVM (ES-SVM) used to determine TSC

Dataset for Machine Learning

a method that investigates all 
parameter combinations.



Exploring turbulence suppression conditions via ES-SVM 6
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Best score obtained; controlling dne/dr is challenging

Good classification score; ne and Te can be easily controlled

TSC : ne=4.2Te−5.28

approach 2: Adjust gas-puff 

ITG

RI

approach 1: Adjust heating 

Current ne

Target Te



Controlling plasma heating to achieve the TSC 7
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maintain to be 1×1019m−3 and 1.5×1019m−3

❑ Electron temperature successfully controlled to meet TSC at density feedback timing
❑ Plasma evolves along ne=4.20Te−5.28

NBI 1.0~1.5MW

ITGRI



Turbulence suppression by heating control 8

w/ control

w/o control (no ECRH)
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❑ w/o ECRH → RI observed in the core region

❑ Turbulence successfully suppressed

ITGRI

averaged at ρ=0.5-0.7

ITGRI

w/ control
w/o control



Effect of turbulence suppression control 9
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❑ Total transport slightly higher
→ mainly due to increased NC from 
additional ECRH

❑ Anomalous transport strongly reduced
• at ρ = 0.5–0.7, transport is close to 

the neoclassical level
• consistent with turbulence 

suppression

Next step
Simultaneous reduction of both neoclassical 
and anomalous transport

ne=1.0x1019m-3

ne=1.5x1019m-3

NC level

turbulence contribution

NC level

turbulence contribution



Impact on confinement 10
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❑ Total confinement slightly deteriorated
→ Increase in neoclassical transport due to 

additional heating

❑ H-factor (ISS04 normalized) improved
→ Demonstration of improved confinement 

through turbulence suppression

This clearly demonstrates the effectiveness 
of improving confinement through 
turbulence suppression.

approach 2: Adjust gas-puff

approach 1: Adjust heating 



Turbulence suppression also achieved through density control 11
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free choice of heating

❑ Turbulence suppression achieved also via gas-puff 
control

❑ Transient increase in turbulence due to gas-puff–
induced density redistribution

❑ Future work: Optimize control parameters for stable 
suppression

turbulence suppression level achieved by heating control



Summary / Key Takeaways

❑ Turbulence suppression achieved via real-time plasma control
• Temperature control adjusts ECRH to follow the Turbulence Suppression Condition (TSC)

• Density control uses gas puffing to maintain target density along TSC

❑ Turbulence suppression reduces anomalous transport
• Transport in ρ = 0.5–0.7 approaches neoclassical level

❑ Suppression of anomalous transport improves the confinement
• Total confinement slightly reduced due to increased neoclassical transport

• H-factor improved, demonstrating the effectiveness of turbulence suppression

❑ Future Work
• Density control: Optimize parameters for more stable turbulence suppression

• Another approach: Explore operation without prior machine learning

• Extension to other devices: Investigating the applicability in tokamaks and optimized stellarators 
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Summary) w/ heating control experiment
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Summary) w/o heating control experiment



Summary) Density control experiment 15
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