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JET has carried out two Deuterium Tritium Campaigns in last 5 years, with exceptional scientific output.

Several real time controllers have been developed on purpose for DT operation, or have been modified in
order to cope with it

e Other real time control schemes have been
routinely used in D/T operation, but these did
not need a specific experiment.

e The control experiments shown are the result
of a long standing effort, controllers
developed on smaller tokamaks, tested in D
or D/H and then ported to D/T.

O D/T isotope concentration real time control
O XPR vertical position control
O Non Performing pulse real time detector (DUD)

O H/L power threshold control during H mode exit
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O D/T isotope concentration real time control
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) D/T ratio control experiments in JET .
}}{===_DT therm. —— therm.+DTBT
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* D/T ratio needs to be controlled in future fusion
devices in order to optimize performance and
control burn phase

N

dRpr/dV, 1/(cm?3s)
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» JET DTE3 featured D/T ratio control experiments by

means of RT scheme [Lennholm, M. et al, PRX Energy] 0
nt/(np + nr)

* D/T ratio measured in real time via spectroscopy in D) T-Feed-Forward

divertor and demonstrated with gas injection and Reference

DEHEtS Lb Nl Controller

0 (PID)

* D/T ratio control coupled with ELM frequency T/(T+D)

control using gas (MIMO control) Measured  D-feed-forward
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D/T ratio control experiments in JET

JET DTE3 featured D/T ratio control experiments by
means of gas injection (104649) and pellets (104651)

RT control signal based on divertor spectroscopy (cyan),
actuators are gas valves(blue) and pellets (black)

T concentration reference stepped up at 7.5s

The increase in neutron production clearly correlates
with isotope concentration change

Input power and plasma energy remains the same
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Neutrons, 1/s
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Particle transport modelling for DT mixture control

Results from predictive JETTO simulations — D pellets

le17 JET Pulse No: 104651
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Predictive D, T densities JETTO run (Te, Ti
prescribed from measurements)

Sources modelled with FRANTIC,
HPI12/continuous pellets, PENCIL
Impurities with SANCO, Be, Ni, W. Zeff
calculated

Calculated electron density, neutrons, D/T
ratio and Zeff validated versus
measurements.

BgB model used for particle transport
This modelling approach could be used to
aid design and optimization of future
controllers
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O XPR vertical position control
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((?'*'(}) XPR control in DD and DT

Detachment is essential for future reactor with power dissipation needed larger than 95%
Detachment of the outer divertor is linked to an intense localized radiator in the X-point
region (XPR)

XPR has bee established in WPTE devices and at JET in deuterium

Real-time control of XPR vertical position is needed in order to maintain a stable detachment
in H mode

XPR control scheme was adapted from AUG and optimized using System Identification pulses
applying single frequency Ar modulation

o OO0 DO

DD: JET #103207(0.7Hz), #103205(1Hz), #103208(2Hz)
DT: JET #104290(2/3Hz), #104291(1Hz)
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XPR cqntrol in DT

O Real-time control of XPR was also applied in DT, showing similar
behavior asin D

O The controller successfully maintains a stable XPR position and
fairly constant neutron rate and plasma internal energy along

the discharge, withstanding strong power modulations and
pellets

O Despite constant requested XPR position, the Ar injection is

ramping down, in order to counteract impurity accumulation in
the plasma
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* QOther real time control schemes have been

routinely used in D/T operation, but these did
not need a specific experiment.

* The control experiments show are the result
. _ of a long standing effort, controllers
O Non Performing pulse real time detector (DUD) developed on smaller tokamaks, tested in D
or D/H and then ported to D/T.
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) Non performing pulse detection in JET DT plasmas

O In JET D/T pulses, dud detector has been used to terminate pulses
that were not reaching the expected plasma performance.

O For hybrid D/T scenarios, the dud detection was based on the
following metrics:
» the electron temperature hollowness indicator
» the evolution of the diamagnetic energy
» If their values were below empirically identified thresholds,
the plasma was terminated safely.

O Non performing pulse detection based on surrogate neutron rate
signals for JET DTE1,2,3 and TFTR have been investigated

L. Piron, poster 3035, B65, 16/10
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O H/L power threshold control during H mode exit
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0 The P, controller

=

It is important to maintain large enough power over P, during plasma termination in order to
avoid disappearance of ELMs and W accumulation.
4 The P, controller calculates the excess of power across the separatrix with respect to the P,

scaling law using some approximations:
=  Martin’s scaling law used for both L-H and H-L transitions, assuming no hysteresis. This is due to the absence
of an analytical scaling law for the reverse H to L transition.
= Martin’s scaling law has been deliberately adjusted by a factor of 0.7 to accommodate prediction uncertainty.
" Regarding the calculation of P, the Ohmic power and the time variation of the stored energy have been
neglected.

d Two actuators have been exploited to tailor the P, ,N®t dynamics during the controller tests: the
divertor gas injection module (GIM11) and the NBI power. Gas used to regularize ELMs (impurity

flushing)
L. Piron et al Plasma Phys. Control. Fusion 67 (2025) 055006
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("\) The P, controller (DD an DT)
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In the run up to DT operation several real-time controllers have been developed on purpose for
D/T operation, or have been modified in order to cope with it

 Development of these controllers is a long-standing effort carried out in multiple experimental campaigns,
based on the testing and concept development in Deuterium operation or in D/H at JET

1 Some controllers have been tested in smaller WPTE tokamaks, and then ported to JET

[ Simple models have proven to be effective as a starting point for tuning of D/T controllers starting partially
from Deuterium data (Sys Identification, Integrated transport modelling)

d Developed controllers are specific to D/T operation, while maintaining enough machine agnosticism to be
ported to future tokamak devices

O The methodology shown of developing controllers in D or D/H and then porting them to D/T can serve as a
template for the development of controllers for future D/T operating devices
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ﬁ) DT mixture control
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JET pulse no. #104651, 7.4s
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RT control signal based on divertor
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ratio as measured by HRS
at time t[s
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sources

D by gas injection;
T by gas injection
D by gas injection;
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D by pellets;

T by gas injection

D by pellets;

T by gas injection

spectroscopy (cyan), actuators are gas
valves(blue) and pellets (black)

Profiles show the change in isotope

concentration and neutron rates after 7.5s



@) DT mixture control experiments at JET DTE3, 1.4AMA/1.7T
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@) XPR control in DD and DT
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2.5MA/2.65T, low-0, Pj,~26-27MW
+ The XPR exists also in DT plasmas
and can be successfully controlled,
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@) Particle transport modelling for DT mixture control
=

* This study demonstrates that simple models and assumptions for D/T transport
can be successfully used to predictively model the behaviour of RT controllers
for D/T ratio control. This approach was able to reproduce the experimental
data for the density, DT ratio and neutrons and therefore can be used to
simulate the behaviour of future RT controllers in conditions at different
scenario, particle sources and plasma parameters.

* For future D/T ratio RT controller development, the models presented here
would serve as a foundation for further improvements.

* TRANSP modelling shows: RT scheme based on simple quasi-neutrality and Z_
calculations could be implemented successfully.

* Modelling the response of D/T ratio control across various scenarios, as
demonstrated through JETTO predictive particle modelling, would be a valuable
outcome from this study. For adjusting and optimizing RT controllers, this
workflow could save experimental time and reduce the need for expensive
computations.
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fx\) Machine learning aided neutron yield for dud detection based R
=~ on JET DT plasmas
O A surrogate machine-learning (ML) model for Neutron yield has been built g*ﬂ’. @*@ +§+
based on Deuterium-Tritium discharges performed during DTE2-DTE3. e /a,.’;:,' = -ﬁ?:/- ; > "~
O The Input signals are NBI, ICRH power, Wp, Te, Ne, Isotopic ratio. 5x10"F ',“;i;"{f,’;, e & @%ﬁ %+”°
* The input database includes x10' ¢ _i@“*w
- M21-03 baseline, f
, Fx1a™
- M21-01 hybrid, : :
- M21-09 AT plasmas. 2x‘|O'8- M21-09 ]
- M21-03 :
[ Once included in the real-control system, the Neutron yield model can 10 "M"iigi
generate synthetic data in case of hardware/diagnostic failure and can be o . . .
used for non performing pulse (dud) detection D 5OW2(M})9O e
99969
O The JET-derived surrogate ML model for Neutron yield is under validation N T on predicted
against:
= DTE1 data ]

= DT TFTR data

1 Neutron
Yield (1/s)

T T T T T
0 200 400 600 800 1000
Time Index

L. Piron, this conference
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