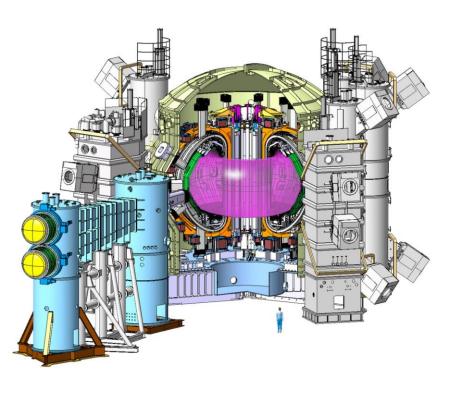


DEVELOPMENT OF EQUILIBRIUM CONTROL SIMULATOR AND EXPERIMENTAL VALIDATION OF ADVANCED ISO-FLUX EQUILIBRIUM CONTROL DURING THE FIRST OPERATIONAL PHASE OF JT-60SA

S. Inoue, Y. Miyata, S. Kojima, T. Wakatsuki, M. Takechi, Y. Ohtani, Y. Ko, M. Yoshida, H. Urano, and T. Suzuki

JT-60SA project

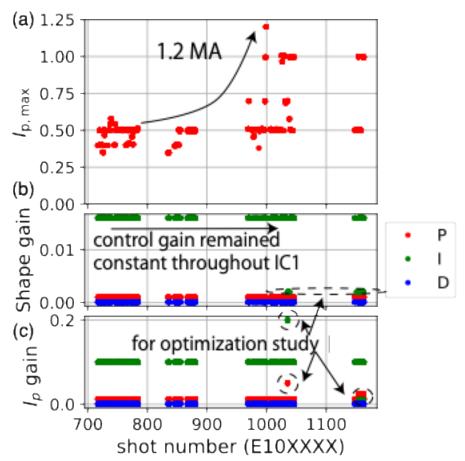


- Joint international fusion experimental device being built and operated by Japan and Europe, in Naka, Japan
- Main characteristics:
 - Large (~3.0 m major radius) superconducting devise
 - High power (41 MW) and long pulse (~100 s) capability
- Target plasma parameters:
 - High current (5.5 MA) and highly shaped ($\kappa_X \sim 1.9$, $\delta_X \sim 0.5$) plasmas with long sustainment (~100 s)

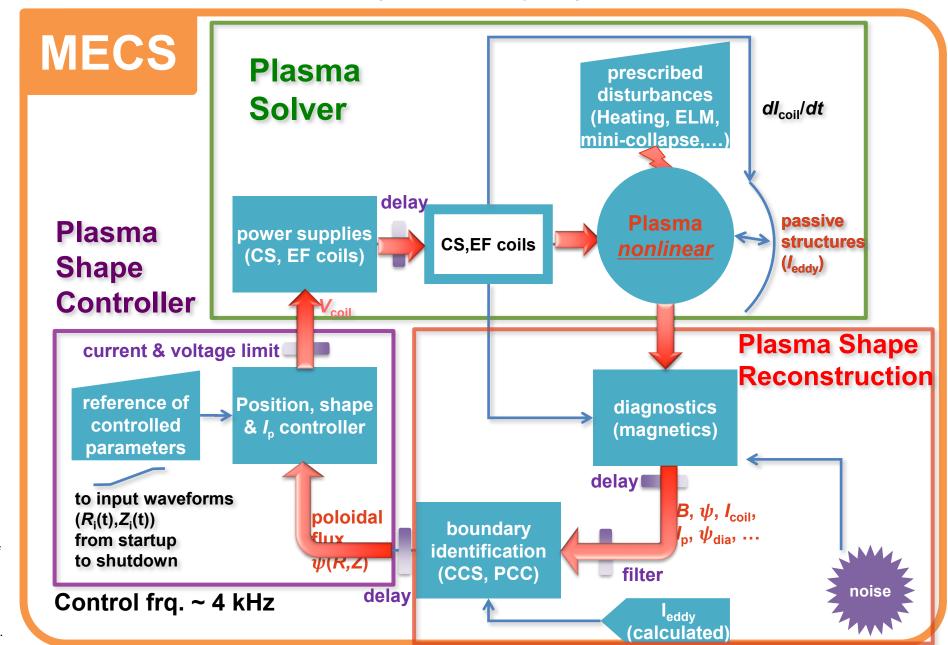
Address key scientific and technological issues for ITER and DEMO

Equilibrium control is essential

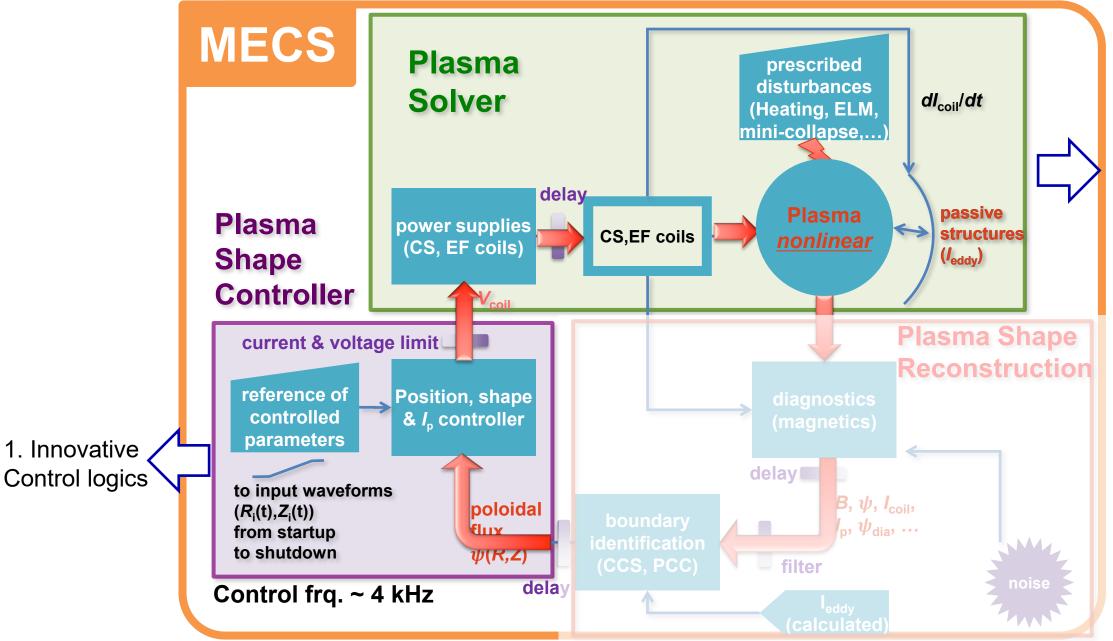
Pre-studied control gain worked without any modification



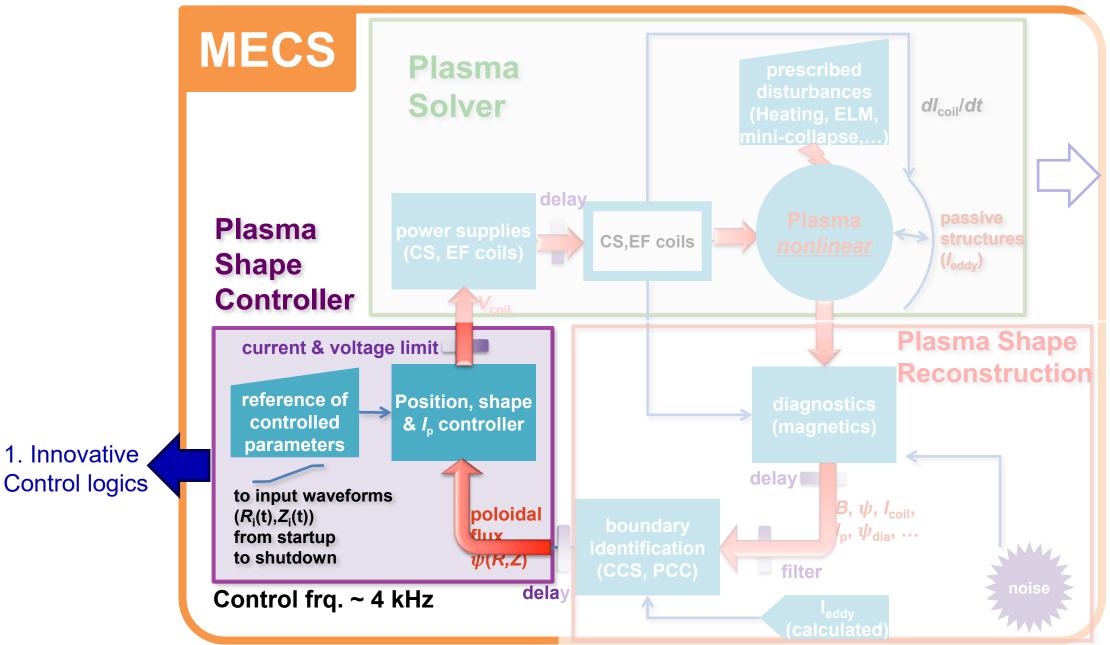
- In the first operation (integrated commissioning, IC) in 2023, ~200 shots with plasma were performed
 - 1.2 MA diverted plasma
 - Pre-studied control gains by simulator, MECS, worked without any modification
- Key question: Why did the predictions work so well?
- Objective: to reveal the essential physics required for accurate prediction of equilibrium control
 → directly linked to fusion performance
- Achievement: first identification of the nonlinear response/axisymmetric field amplification of plasma



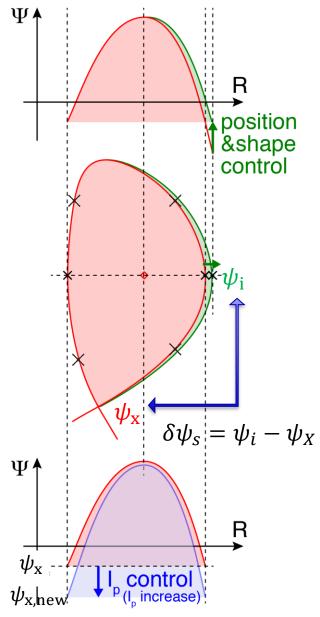
¹ Y. MIYATA, T. SUZUKI, T. FUJITA, S. IDE, and H. URANO, "Development of a Simulator for Plasma Position and Shape Control in JT-60SA," Plasma Fusion Res **7**(0), 1405137–1405137 (2012).



2.Key physics for vertical instability



2.Key physics for vertical instability

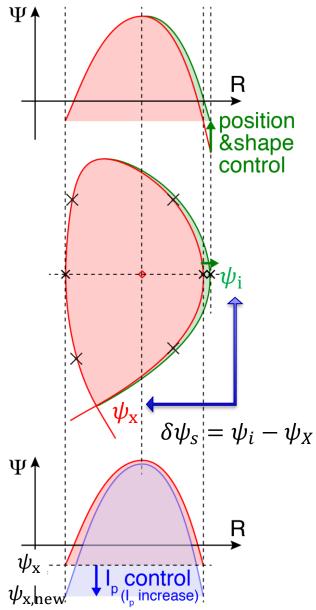


ISO-FLUX control

(**Shape**) $\delta \psi_{\rm S}$: X-point and prescribed control points

(Ip) $\delta \psi_{\rm X}$: Offset of all control points

$$\delta \boldsymbol{\psi} = \delta \boldsymbol{\psi}_{S} + \delta \boldsymbol{\psi}_{X}$$



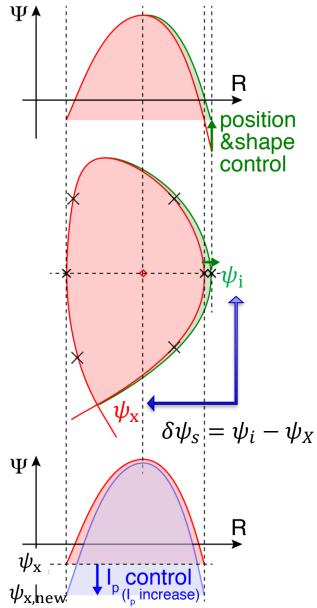
ISO-FLUX control

(**Shape**) $\delta \psi_{\rm S}$: X-point and prescribed control points

(Ip) $\delta \psi_{\rm X}$: Offset of all control points

$$\delta \boldsymbol{\psi} = \delta \boldsymbol{\psi}_{S} + \delta \boldsymbol{\psi}_{X}$$

Control eq. $f_1(\delta \psi) = \delta I_c$ required change of coil current



ISO-FLUX control

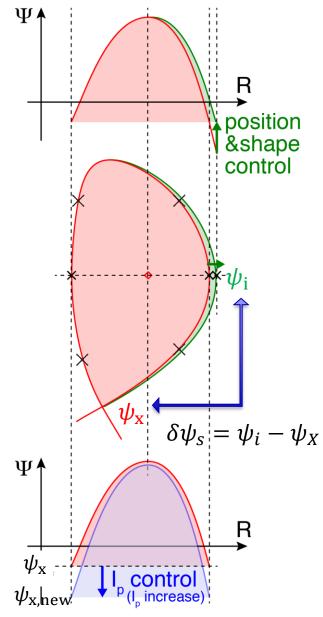
(**Shape**) $\delta \psi_{\rm S}$: X-point and prescribed control points

(Ip) $\delta \psi_{\rm X}$: Offset of all control points

$$\delta \boldsymbol{\psi} = \delta \boldsymbol{\psi}_{S} + \delta \boldsymbol{\psi}_{X}$$

Control eq. $f_1(\delta \psi) = \delta I_c$ required change of coil current

Circuit eq. $f_2(\delta I_c) = V_c$ voltage command



ISO-FLUX control

(**Shape**) $\delta \psi_{\rm S}$: X-point and prescribed control points

(Ip) $\delta \psi_{X}$: Offset of all control points

$$\delta \psi = \delta \psi_{\rm S} + \delta \psi_{\rm X}$$

Control eq. $f_1(\delta \psi) = \delta I_c$ required change of coil current

Circuit eq. $f_2(\delta I_c) = V_c \leftarrow \text{voltage command}$

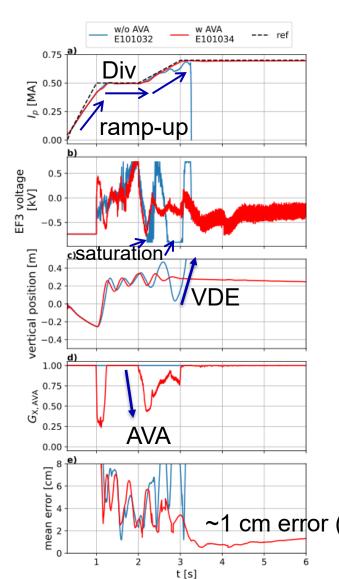
Adaptive voltage allocation scheme

Inoue+, NF21, 23

$$G_{\rm X,AVA} \equiv \frac{|(f_1f_2)^{-1}(V_{\rm c,lim})|}{|\delta\psi_{\rm X}|} \Leftrightarrow {\rm Magnetic\ flux\ controllable\ under\ rated\ voltage\ limits}$$

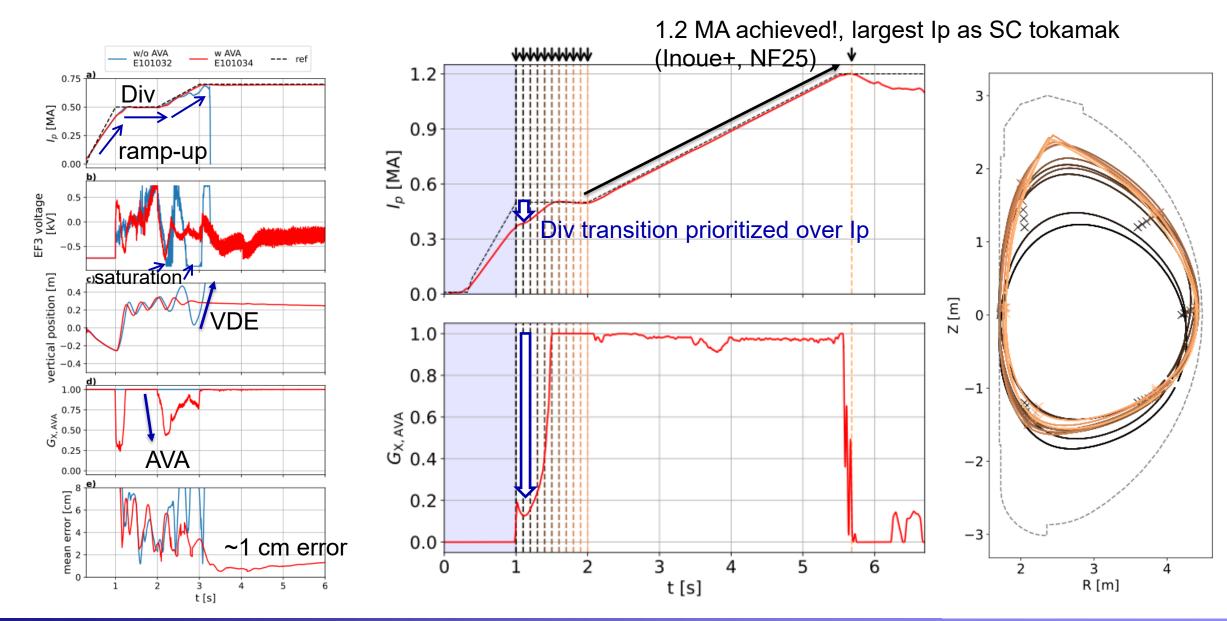
$$\delta \psi_{\text{for control}} = \delta \psi_{\text{S}} + G_{\text{X,AVA}} \delta \psi_{\text{X}}$$

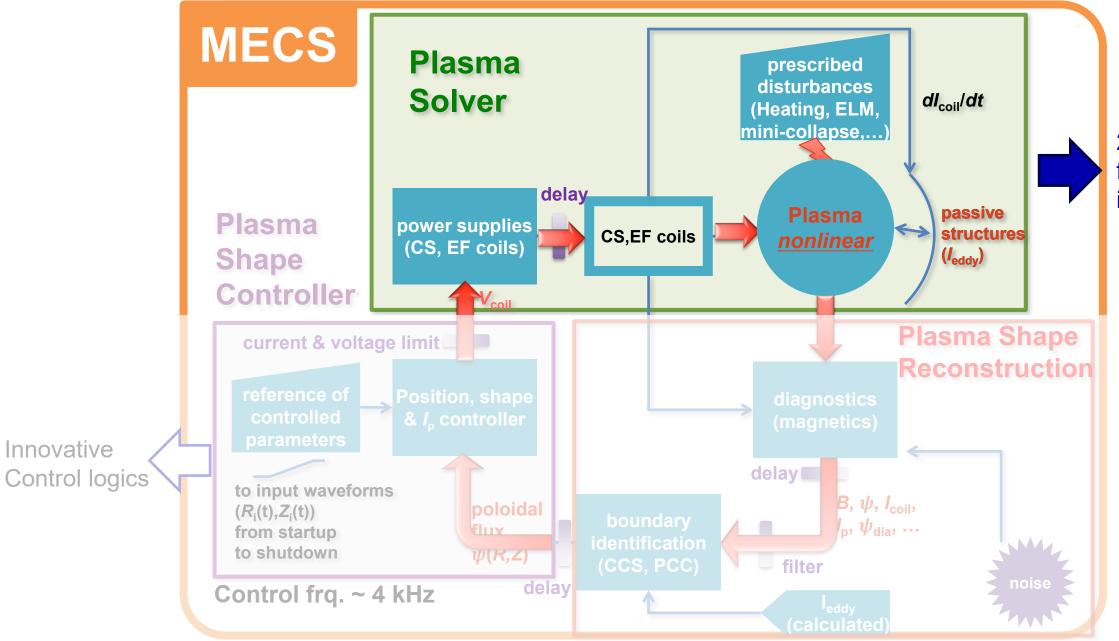
AVA scheme resolved Ip/PS interference in IC



- Discharge: ramp-up to 500 kA → transition to divertor configuration → ramp-up to 750 kA
- Without AVA: oscillations during ramp-up and transition, leading to VDE
- With AVA: $G_{X,AVA}$ resolved the voltage saturation and oscillations were suppressed, leading successful operation
 - Mean error < 2 cm

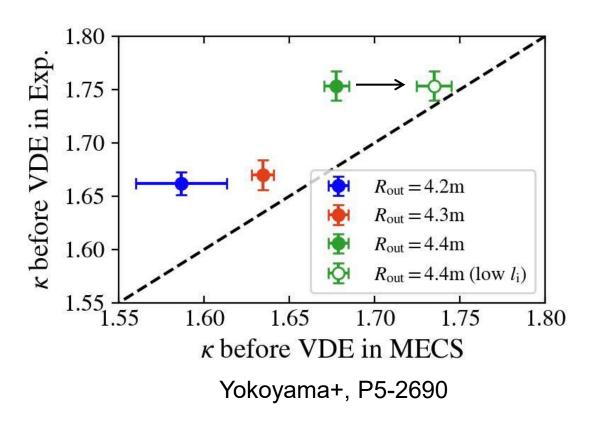
~1 cm error (LCFS ⇔ Reference points)





2.Key physics for vertical instability

Physics background of MECS



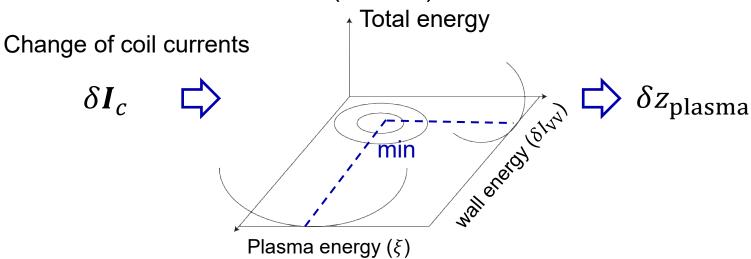
- From the energy principle, vertical instability (VI) appears as a minimum of plasma energy and wall/coil magnetic energy
 - Energy of plasma is proven to be perturbed
 Grad-Shafranov eq.¹
- MECS, CREATE-NL, or DINA code can self-consistently simulate VI by coupling circuits equations with free-boundary Grad– Shafranov eq.
- MECS simulation captures the lower limit of accessible κ JT-60SA experiments went beyond it

Is self-consistent (but time-consuming) VI calculation indispensable for simulator?

¹ J.P. Freidberg, A. Cerfon, and J.P. Lee, "Tokamak elongation – how much is too much? Part 1. Theory," J Plasma Phys **81**(6), 515810607 (2015).

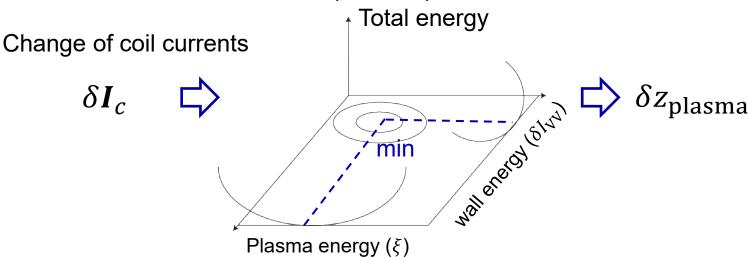
Open loop response experiments for comparison between Linear and Nonlinear model

Nonlinear Model (MECS)



Open loop response experiments for comparison between Linear and Nonlinear model

Nonlinear Model (MECS)



Linear Model

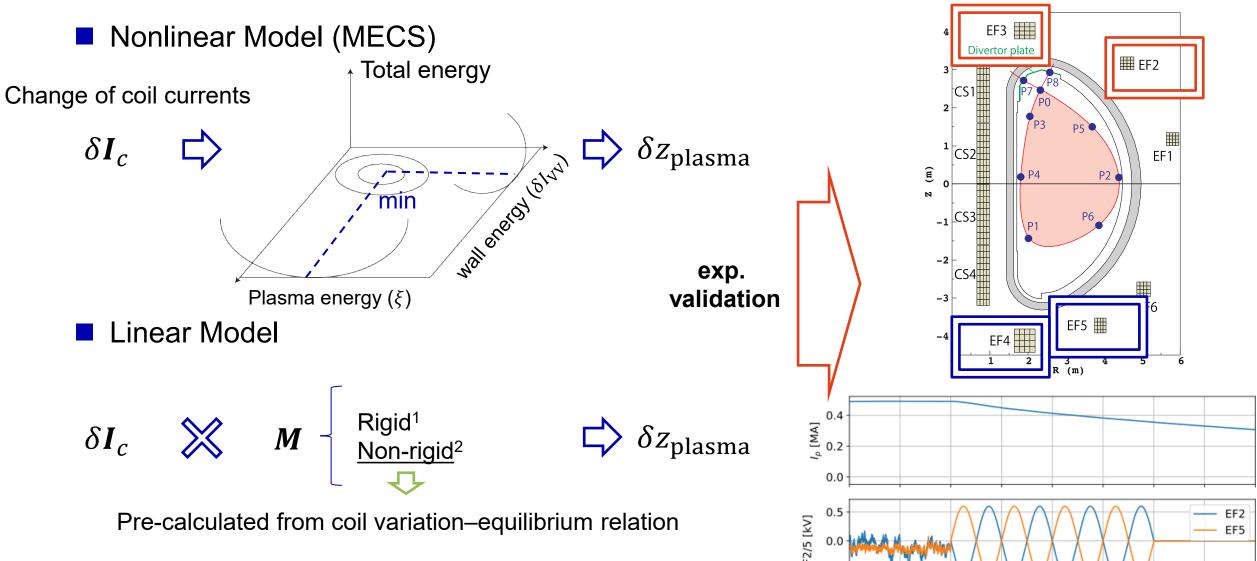
$$\delta I_c$$
 \gtrsim M Rigid¹ $\delta z_{
m plasma}$

Pre-calculated from coil variation—equilibrium relation

¹ A. Coutlis, *et al.*, Nucl Fusion **39**(5), 663–683 (1999).

² A. Portone, Nucl. Fusion **45**(8), 926–932 (2005).

Open loop response experiments for comparison between Linear and Nonlinear model



2.00

2.25

2.75

t [s]

2.50

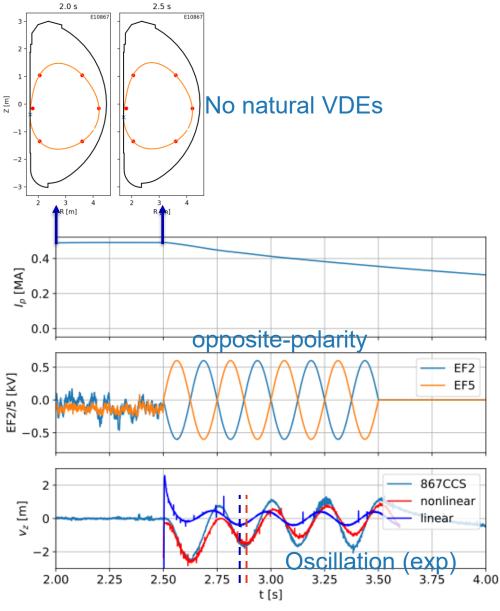
3.75

3.50

¹ A. Coutlis, *et al.*, Nucl Fusion **39**(5), 663–683 (1999).

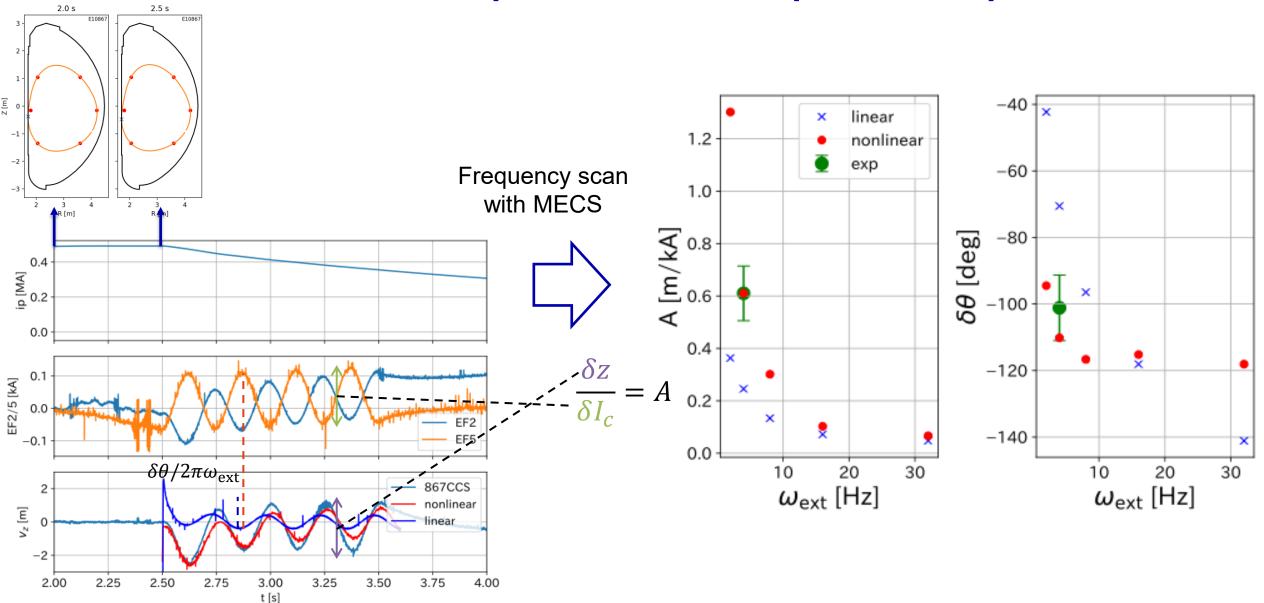
² A. Portone, Nucl. Fusion **45**(8), 926–932 (2005).

Nonlinear model reproduces both amplitude and phase

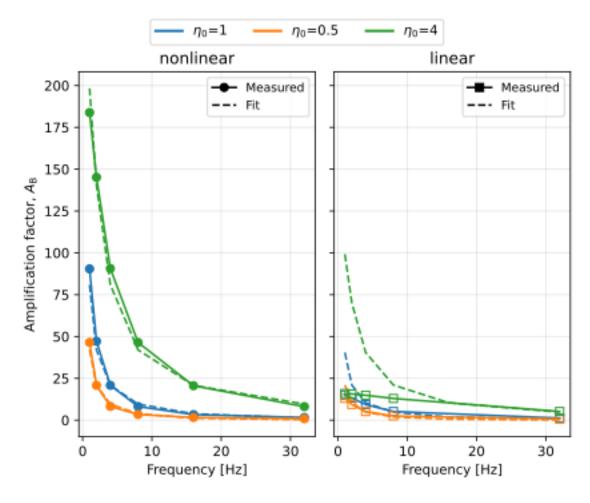


- Vertical oscillations were excited in response to change of EF coil current
- Simulations mimicking the experiment compared linear and nonlinear models
- Nonlinear model reproduced both amplitude and phase of the experiment well

Nonlinear model reproduces both amplitude and phase



Proposed RFA model qualitatively reproduces the nonlinear response



- Strong amplification at low frequency range is consistent with Resonant Field Amplification (RFA) of the stable n=0 resistive wall mode
- In simulations, wall resistivity was scanned from x1/2 to x4 to examine the response
- Following the RFA formulation¹:

$$\tau_W \frac{dB_S}{dt} = \gamma_0 \tau_W B_S + M^* B_{\text{ext}}$$

Including eddy-current shielding in $B_{\rm ext}$ and assuming $\delta z_{\rm s} \sim B_{\rm s}$, the transfer gives:

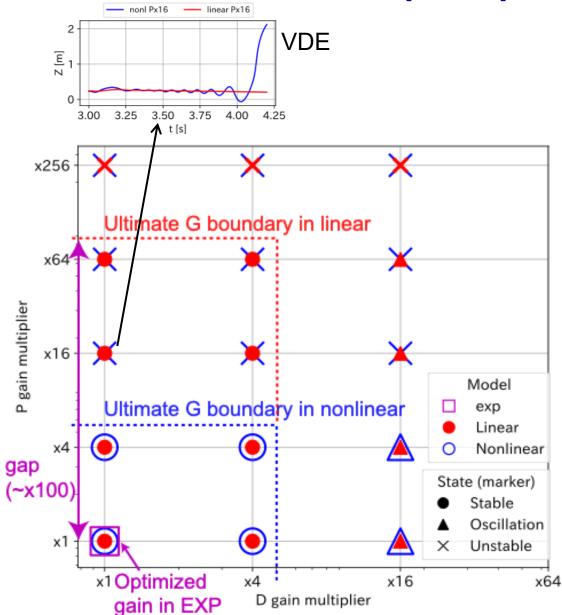
$$\frac{\delta z_{s}}{B_{\text{ext}}} \exp \delta \theta = \frac{A_{0}}{(1 + i\omega \tau_{W})(i\omega \tau_{W} - \gamma_{0})}$$

This model qualitatively **reproduces the** response with $\tau_W = 450$ ms, and $\gamma_0 = -20.7$ s⁻¹

¹ A.M. Garofalo, et al., "Sustained Stabilization of the Resistive-Wall Mode by Plasma Rotation in the DIII-D Tokamak," Phys Rev Lett 89(23), 235001 (2002).

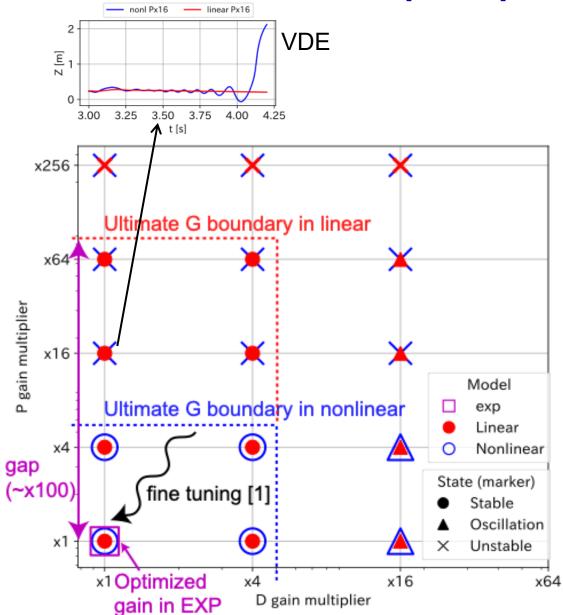


- Feedback control is applied in both models
- Optimized gain in exp. is unity
- Ultimate sensitivity gains are calculated by changing the PD gain
- Linear (red): unstable at ×256; Nonlinear (blue): unstable already at ×16



- Feedback control is applied in both models
- Optimized gain in exp. is unity
- Ultimate sensitivity gains are calculated by changing the PD gain
- Linear (red): unstable at ×256; Nonlinear (blue): unstable already at ×16
- Linear model: Ultimate sensitivity gains ≈ x100 higher → significant gap from the experiment

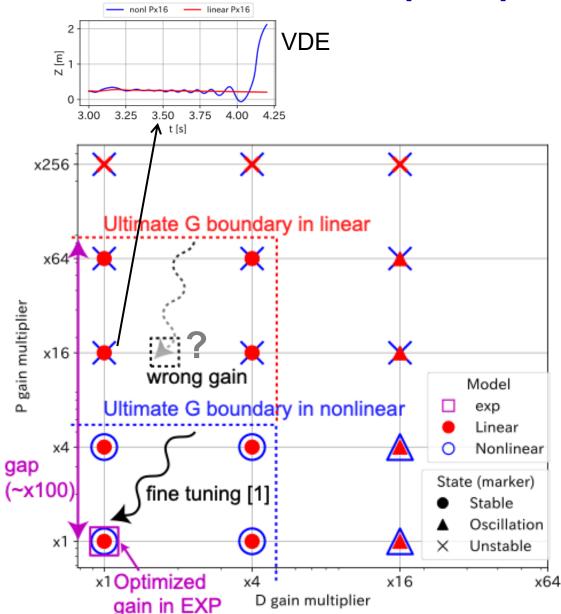
Closed-Loop Response: Importance of Nonlinearity



- Feedback control is applied in both models
- Optimized gain in exp. is unity
- Ultimate sensitivity gains are calculated by changing the PD gain
- Linear (red): unstable at ×256; Nonlinear (blue): unstable already at ×16
- Linear model: Ultimate sensitivity gains ≈ x100 higher → significant gap from the experiment
- Nonlinear model: Optimized ultimate sensitivity gains ≈ x4 experimental P, D gains
 - Optimal gain is the same order of the ultimate sensitivity gain → obtained by fine-tuning via frequency response with MECS [1]

[1] Kojima+, Nuclear Fusion 2025

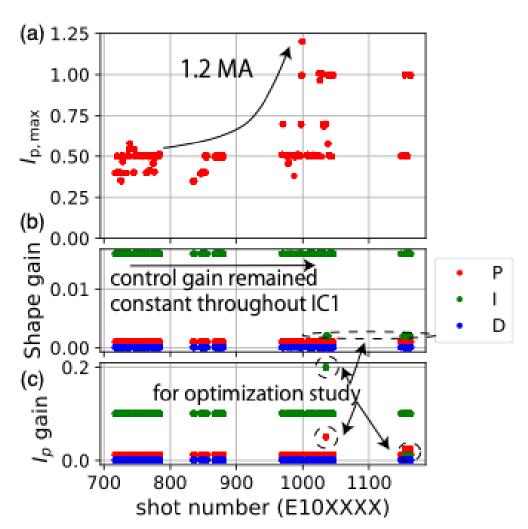
Closed-Loop Response: Importance of Nonlinearity



- Feedback control is applied in both models
- Optimized gain in exp. is unity
- Ultimate sensitivity gains are calculated by changing the PD gain
- Linear (red): unstable at ×256; Nonlinear (blue): unstable already at ×16
- Linear model: Ultimate sensitivity gains ≈ x100 higher → significant gap from the experiment
- Nonlinear model: Optimized ultimate sensitivity gains ≈ x4 experimental P, D gains
 - Optimal gain is the same order of the ultimate sensitivity gain → obtained by fine-tuning via frequency response with MECS [1]
- Under RFA, nonlinear model is essential

[1] Kojima+, Nuclear Fusion 2025

Summary and Future plan



- JT-60SA's first operation achieved a smooth divertor transition, 1.2 MA plasma current, and a Guinnesscertified 160 m³ plasma volume, all using <u>pre-</u> <u>studied gains by MECS without modification</u>
 - MECS simulation captures the lower limit of accessible κ (Yokoyama+, P5-2690)

Key question: Why did the predictions work so well?

- Axisymmetric resonant field amplification a key physical process governing vertical instability was self-consistently solved in MECS, enabling preoptimization of control gains
- Toward OP2, direct control logic for $\kappa \& \delta$, together with the use of in-vessel coils & stabilization plates, will enable operation with $\kappa > 2$ (Kojima+, P6-2716)

Nonlinear model

Loop 1 Plasma current update:

 $I_p^n \rightarrow I_p^{n+1}$ by Poynting's theorem and using external inductance as

$$\frac{\partial}{\partial t} (\underline{L_p I_p} + \underline{\alpha C_E \mu_0 R_0 I_p}) + \dot{\psi}_{res} + \frac{\partial}{\partial t} (\sum_{coil} M_{cp} I_c + \sum_{vv} M_{vp} I_v) = 0$$

Plasma inductance Resistive flux consumption coil&vv mutual inductance

Loop 2

- Magnetic axis update: $x_{ax}^n \rightarrow x_{ax}^{n+1}$
- Imaginary quadrupole field update: $\mathbf{B}_i^n \to \mathbf{B}_i^{n+1}$ with $B_r(\mathbf{x}_{\mathrm{ax}}^{n+1}) = B_z(\mathbf{x}_{\mathrm{ax}}^{n+1}) = 0$
- Poloidal flux convergence: $\psi_p^n \to \psi_p^{n+1}$ by $-\Delta \psi = FF' + p'$
- Eddy currents update: $I_v^n \to I_v^{n+1}$ by $M_{vv} = \frac{\partial I_v}{\partial t} + M_{cv} = \frac{\partial I_c}{\partial t} + \frac{\partial (M_{pv}I_p)}{\partial t} + RI_v = 0$ vv, coil, and plasma multial inductances VV resistance
- Plasma current profile update: $j_p^n(\psi) \to j_p^{n+1}(\psi)$ for $\beta_p \& l_i$ convergence to prescribed values Loop 2 converged?



Linear Model

Implemented following the non-rigid model [1]

$$L^*\dot{x} + Rx = V,$$
 Current center vertical displacement $\longrightarrow z_P = Cx$. (1)

where x is the vector of length N_c of mesh currents [8] and Vthe vector of voltages applied to the active coils. The elements of the $N_c \times N_c$ modified inductance matrix L^* [2] and $1 \times N_c$ output matrix C are:

$$L_{ij}^{*} \equiv L_{ij} - S_{ij} = \frac{\partial \psi_{i}^{(c)}}{\partial x_{j}} + \frac{\partial \psi_{i}^{(p)}}{\partial x_{j}},$$

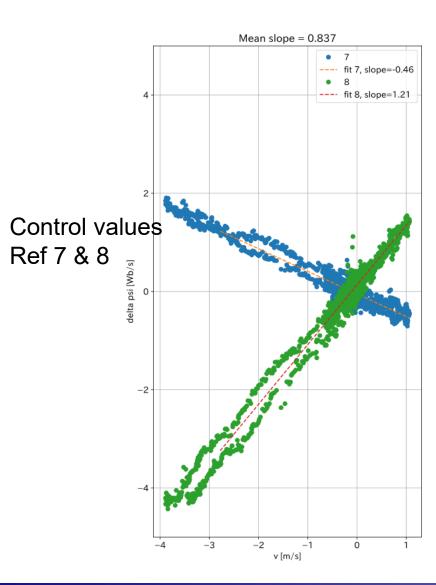
$$C_{j} = \frac{\partial z_{p}}{\partial x_{j}},$$

$$\uparrow$$
(2)

Computed from equilibrium changes due to coil variations

¹ A. Portone, "The stability margin of elongated plasmas," Nucl. Fusion **45**(8), 926–932 (2005).

Stabilization effect of controller (preliminary)



- $\Delta \Psi = \Psi_X \Psi_i$ (magnetic flux for control)
- Derivative control value: $\frac{d}{dt}\Delta\Psi = \frac{\delta(\Psi_X \Psi_i)}{\delta t} \simeq \frac{d\psi}{dt} \equiv X$, where ψ is a perturbed magnetic flux
- $T_W \dot{\psi} \gamma_0 \tau_W \psi = G \psi \to \tau_W \dot{X} \gamma_0 \tau_W X = G X$
- Controller compensate $G_{\rm d} \frac{\delta(\Psi_X \Psi_i)}{\delta t}$ for 250 us
- If GX is constant during $\delta t = 250$ us, from $\int_0^{\delta t} GX dt = G_{\rm d} \frac{\delta(\Psi_X \Psi_i)}{\delta t}$

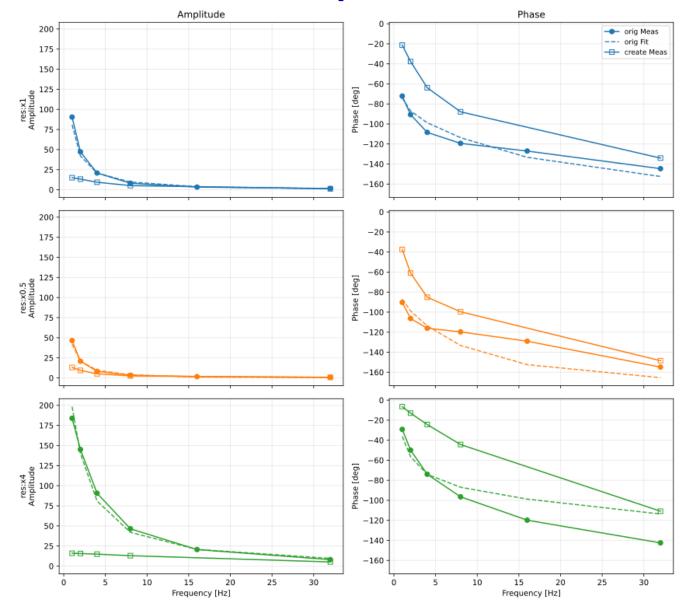
$$G = G_d/\delta t = 10^{-4} \times 4000 = 0.4$$

From the figure X corresponds to the vertical velocity, thus G can be compared to γ of vertical instability,

$$G = 0.4 \ll \gamma_0 \sim 50$$

- $\dot{X} \sim v$
- Experimentally applied gains and observed growth rate strongly indicates that the controller has the stabilization effect against vertical instability

with phase



Largest Plasma Volume 160 m³ was achieved by increasing elongation

Errors are quite small < 1% => small drifts & noises

