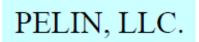

ITER Disruption Mitigation System:

Stefan Jachmich ITER Organization

30th IAEA-FEC, Oct 2025 Chengdu, China

Acknowledgement

- M. Lehnen^{1†}, U. Kruezi¹, F.J. Artola¹, M. Dibon¹, S. Giors¹, M. Kochergin¹, A. Loarte¹,
- T. Luce^{1,2}, R.A. Pitts¹, L.R. Baylor³, T. Boujet⁴, D. Dunai⁵, T.E. Gebhart³, Á. Gyengy⁶,
- A. Horvat⁷, G. Kocsis⁸, M. Kong⁹, J. Manzagol⁴, A. Matsuyama^{10,11}, P. Matura¹², F. Millet⁴,
- E. Nardon¹³, D.I. Refy⁸, U. Sheikh⁹, S. Signetti¹², T. Szepsi⁸, I.V. Vinyar¹⁴, S. Zoletnik⁸, A. Zsakai⁸



¹ ITER Organization, Route de Vinon-sur-Verdon - CS 90 046, 13067 St Paul Lez Durance Cedex, France

² Princeton Plasma Physics Laboratory, Princeton, New Jersey, US

³ Oak-Ridge National Laboratory, Oak Ridge, US

⁴ Univ. Grenoble Alpes, CEA IRIG-DSBT, F-38000 Grenoble, France

⁵ Fusion Instruments Kft, Budapest, Hungary

⁶ Budapest Univ. Techn. & Economics, 1111 Budapest, Hungary

⁷ Caspus, Oxford, UK

⁸ HUN-REN Centre for Energy Research, 1121 Budapest, Hungary

⁹ Ecole Polytechnique Federale de Lausanne, Swiss Plasma Center, Lausanne, Switzerland

¹⁰ Graduate School of Energy Science, Kyoto University Uji, Japan

¹¹ QST, Rokkasho Institute, Aomori 039-3212, Japan

¹² Fraunhofer Institute for High-Speed Dynamics, EMI, Freiburg, Germany

¹³ CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

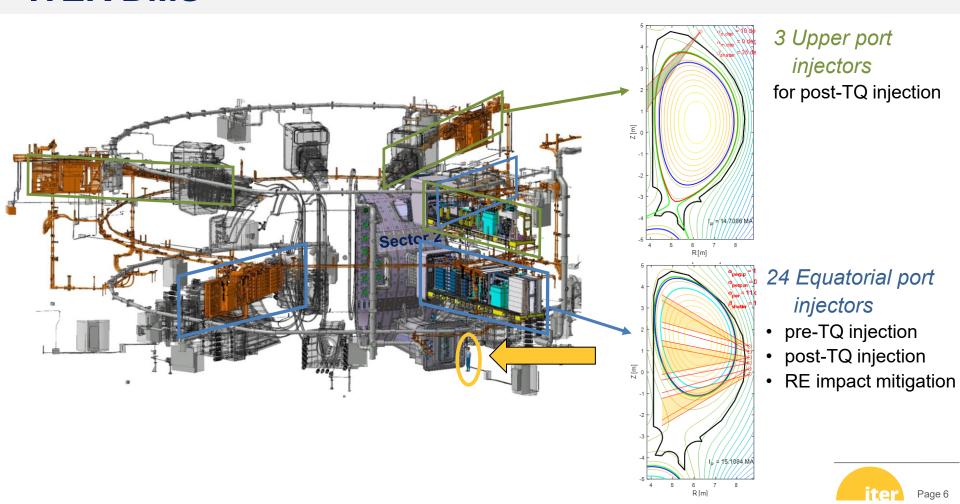
¹⁴ PELIN, LLC, 18A, Grazhdanskaya Saint Petersburg 190031, Russia

[†] deceased

Outline

- > Introduction
- Design of the ITER Disruption Mitigation System
- DMS optimisation for ITER operation
- Summary and Outlook

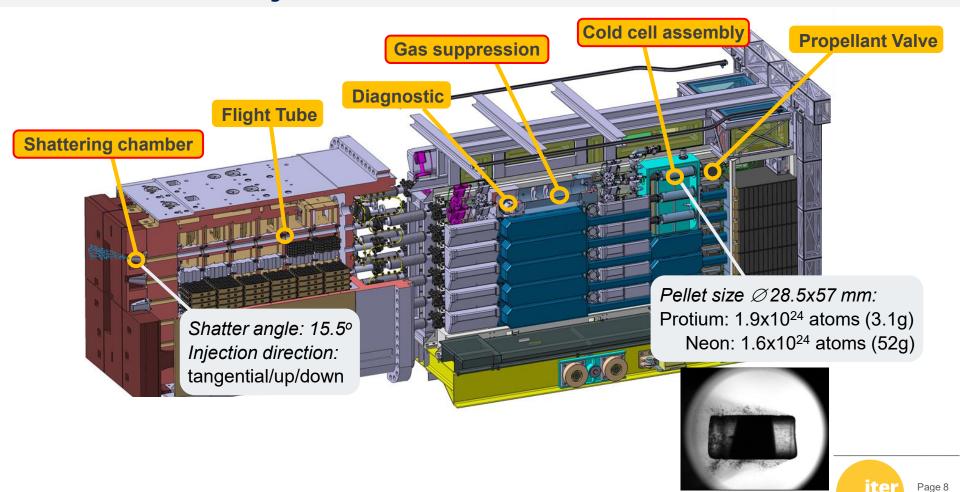
Motivation


- > ITER requires disruption mitigation system from early operation onwards
- > ITER DMS design based on Shattered Pellet Injection: pellets of H, H/Ne mixtures and Ne

Material injection for mitigation:

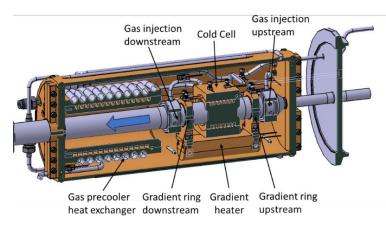
Disruption phase:	pre-TQ	post-TQ	RE-beam
Thermal load of W _{th}	Ne (+H)	-	-
Thermal load of W _{mag}	Ne (+H)	Ne (+H)	-
Electromagnetic loads	Ne	Ne	-
RE avoidance	Н	(H)	-
RE impact	-	-	H or Ne

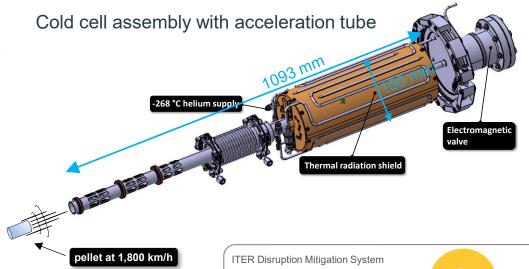
ITER DMS design


ITER DMS

ITER DMS status

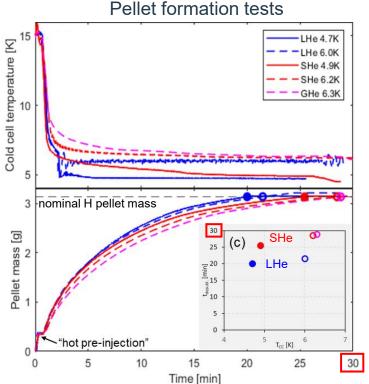
- ➤ Final design review approved Dec 2024 → design phase of DMS project concluded
- Next: manufacturing phase of DMS:
 - → Detailed design and construction of onsite SPI laboratory (alignment test facility) started
 - → Prototyping of cryo system, propellant valve, CCA launched
 - → Manufacturing: 2027-2029
 - → Assembly and offline testing: until 2030
 - → Port-plug integration: starting 2029
 - → Port-plug installation: 2032/2033
 - → First DMS injection into plasma: 2034


ITER DMS – Injector



Cold cell assembly (CCA) – pellet formation

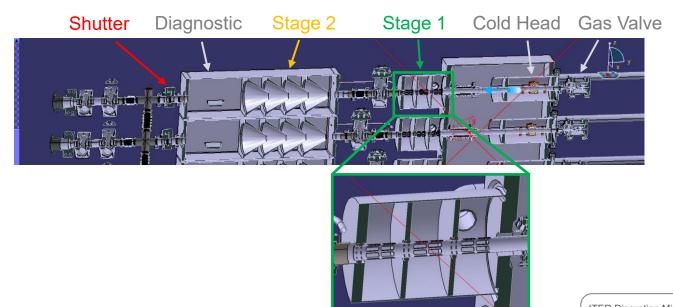
- ➤ ITER duty cycle has a target of 30 min → gas pre-cooling required
- ➤ SHe feed to 6 CCAs in parallel → risk of unbalance for simultaneous H and Ne pellet formation
- Tight prismatic cryostat and flexibility for pellet size required
 - → cartridge design including electroformed cold cell on acceleration tube


Electroformed cold cell and T_{grad} control

Cold cell assembly – pellet formation

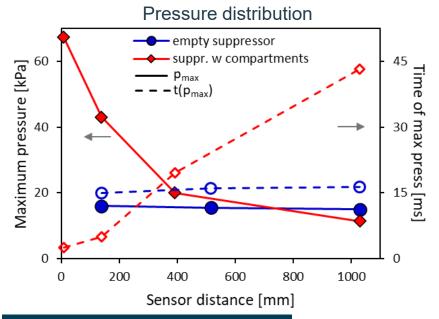
- CALYPSO cryostat: set of heat exchanger for SHe production
- Cold cell assembly prototype manufactured for use with GHe and SHe

- Formation tests with "hot pre-injection" recipe
- Better control of desublimation pressure resulting in improved pellet crystal structure

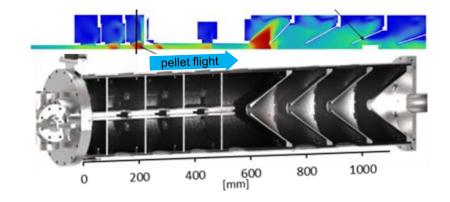

→ Longer formation times with SHe due to slower cooldown but still within duty cycle requirement

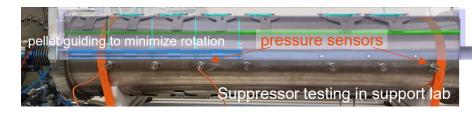
Note: T_{CC}< 6K required to limit pellet sublimation (loss of mass) prior DMS trigger (~ hours) and to minimise impact on breakdown

Propellant gas suppression


Needed for

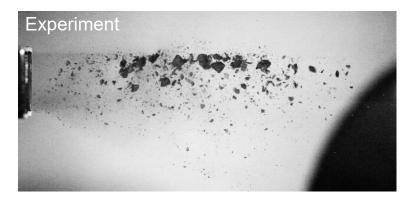
- ➤ Propellant gas retention to avoid premature trigger of TQ (Γ_{gas} < 5x10²⁴ H₂/s)
- Pressure reduction behind pellet to ensure precise pellet trajectory (stage 1)
- Deflection of debris produced during pellet launch (stage 2)

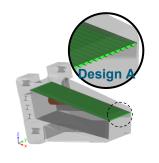

Propellant gas suppression

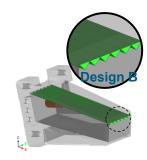

- CFD modelling to guide design (similar to acoustic delay)
- Setup mimicking ITER design tested in DMS Support Laboratory

→ Muzzle break concept feasible

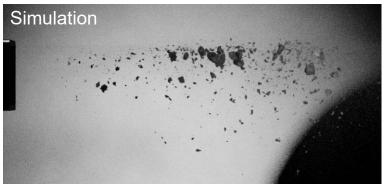
Note: gap pellet-wall deteriorates gas retention

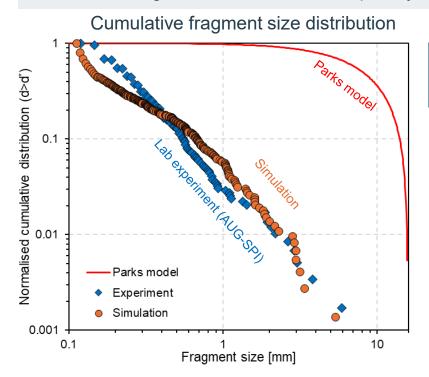




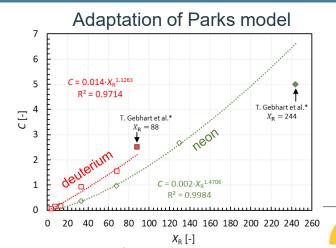


Pellet fragmentation


- Fragmentation simulated with MD-cube (discrete element code)
- Material parameters calibrated against lab shattering experiments using synthetic diagnostics

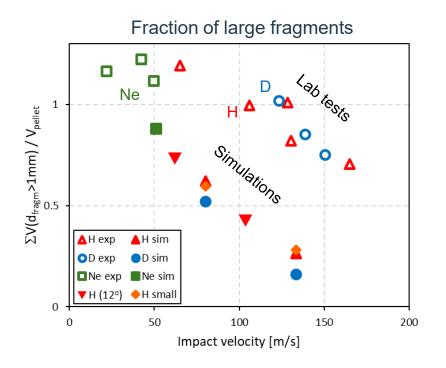


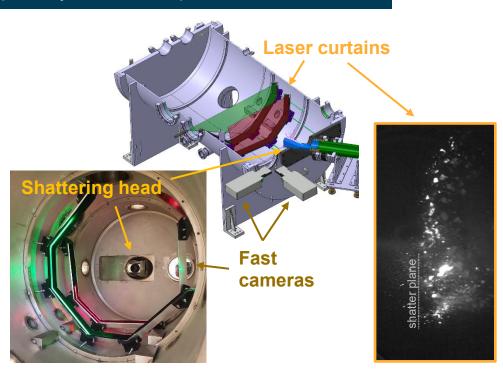
→ Tool to assess advanced shattering geometries


Pellet fragmentation

- Fragment size distribution on log-log scale expected to be linear
- Statistical fragmentation model developed by Parks and refined by Gebhart et al.

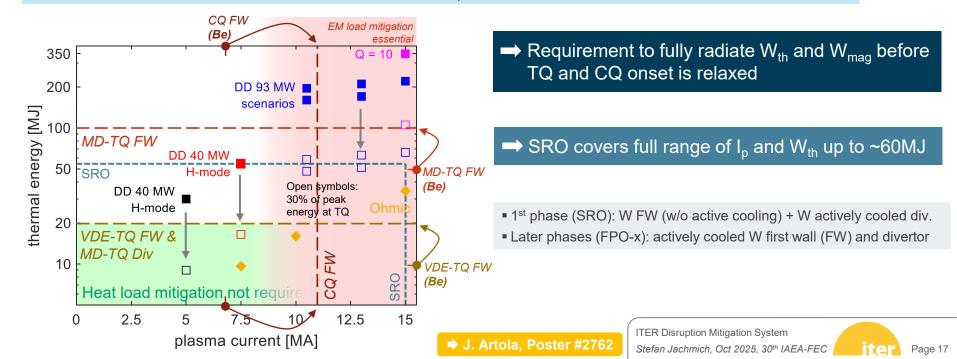
→ Parks model overestimates fraction of large fragments=> prediction for material assimilation affected

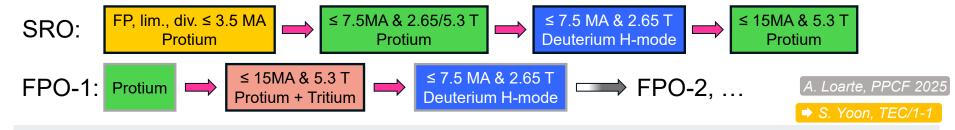

Better predictability with amended parameterisation:



Pellet fragmentation

- Fragment plumes of ITER-DMS pellets characterised with laser curtains
- → Simulations reproduce trend of for FSD dependence on impact velocity Note: discrepancy of absolute volume fractions possibly due to 2D imposed volume estimates

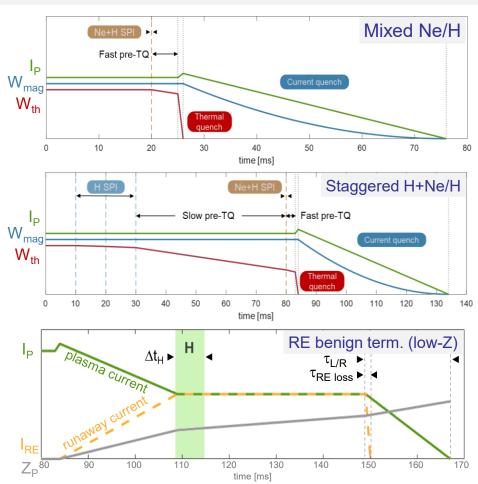



DMS Optimisation for ITER Operation

Load limits

- CQ melting avoidance up to 11-12 MA with W wall
- ➤ TQ melt limits for FW ~2x higher
- DMS radiation flash load no issue for W and remains acceptable for SS diagnostic FW
- ➤ Electromagnetic load mitigation required for $I_p \ge 8-9$ MA

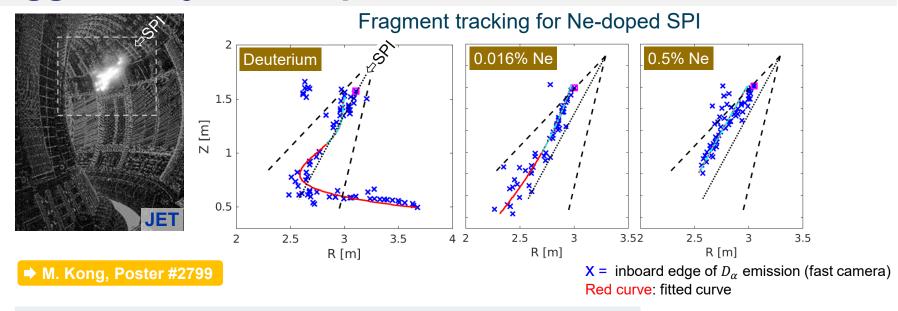
DMS Optimisation in ITER Research Plan


Targets for DMS Optimisation:

M	litigation:	W_{th}	W_{mag}	Electromagn.	RE Hot tail	RE β decay (T)	RE Compton	RE Avalanch.	Impact of RE
D	emonstr. in SRO	60 MJ	400 MJ	15 MA 🗸	10-20 keV	Y (in FPO-1)	N	15 MA (✓) (if w/o risks)	Up to (✓) low risk I _{RE}
N	leeds for DT-1	350 MJ	400 MJ	15 MA	10-20 keV	Υ	Υ	-	-

- > SRO: DMS optimisation w/o risking water leaks is possible
- ➤ FPO: large thickness of upper W PFCs → lower risk of single RE event causing water leak
- > Risks of additional RE-seeds in DT:
 - β-decay: as soon as T is used
 - Compton-scattering: risk increases gradually with increasing fusion power and activation

Injection schemes

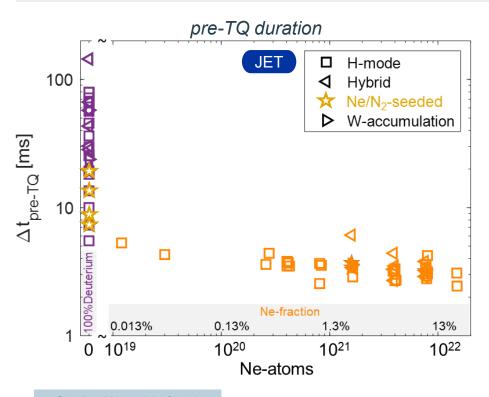


pre-TQ requirement:

0.27% Ne + 99.73% H (assimilated $2x10^{24}$ atoms)

- Fast pre-Thermal Quench (~ few ms)
- BUT: Arrival time critical for multiple SPI
- Slow pre-TQ (several 10 ms) after H SPI
- Significant pre-TQ energy loss
- Dilution cooling aids RE avoidance (T_e < 1 keV)
- BUT: plasmoid drift limits H-assimilation
- H SPI leads to fully benign termination
- No re-avalanching
- Broad wetted area during final RE loss
- BUT: small window for access to regime

Staggered injection – plasmoid drift

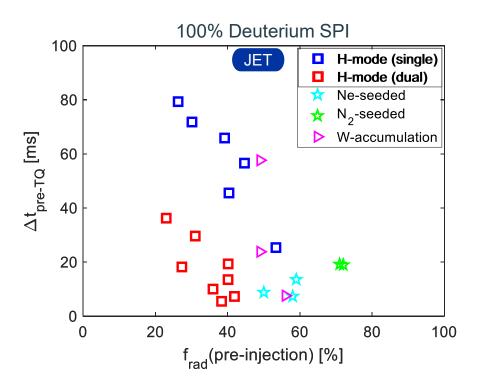


- SPI into H-mode (2.5 MA, W_{th}~4MJ)
- Trajectory with maximum emission in fast camera observation identified
- Scan of neon-fraction from 0 10%

Staggered injection – pre-TQ dynamic

Time until TQ examined for different target plasmas

Ne/D-SPI:

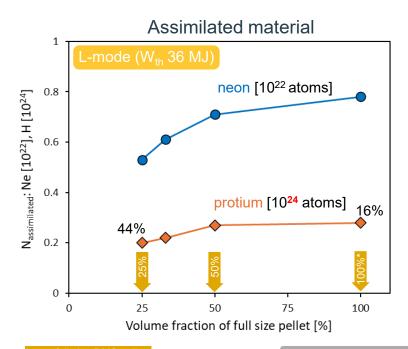

- smallest Ne-doped SPI already drastically shorten pre-TQ
- > D-SPI:
 - generally longer than Ne/D
 - large variation of pre-TQ duration!

Similar W_{th}~4MJ for Hmode and seeded plasmas

S. Jachmich et al, EPS 2024

Staggered injection – pre-TQ dynamic

Radiated power fraction before SPI injection

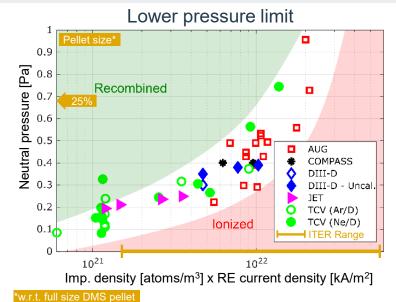

- Earlier TQ-onset for dual-D injections → faster energy loss?
- pre-TQ very sensitive to intrinsic and seeded impurities

- → Impedes staggered injection scheme
 - => optimum injection scheme to be decided in real-time when disruption is detected

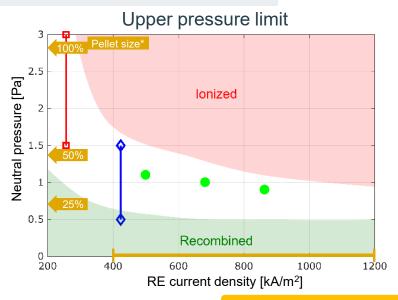
Material assimilation – Pellet size

- 1D INDEX simulations of Ne+D SPI into ITER plasmas
- Low W_{th} and T_e limits material assimilation
- Fraction of assimilated material higher for small pellets, but possibly less core deposition

A. Matsuvama, TSDW 2025



→ Assimilation saturates for large pellets (>50%) in low energy plasmas


Note: assimilation fraction in DT H-mode ~ 78%

RE benign termination limits

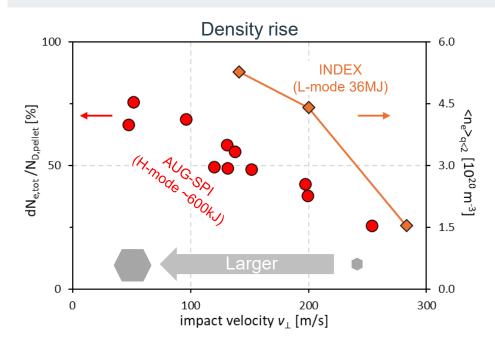
- RE benign termination: recombination of companion plasma + final low q_{edge} collapse
- Lower pressure limit: material amount to achieve recombination (→ less Ne beneficial)
- Upper pressure limit: RE ionisation causes ne rise → benign termination degrades

→ pre-RE SPI impacts benign termination feasibility
=> need to minimise Ne and optimise H assimilation

⇒ U. Sheikh, Poster #2818

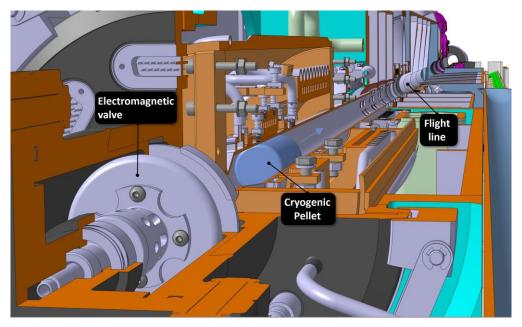
Summary and Outlook

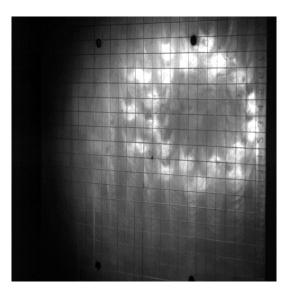
Summary and Outlook


- DMS is a key machine protection system for effective execution of the ITER Research Plan
- Design is close to completion and has reached maturity for manufacturing
- Some remaining physics and technology questions guiding the design are being resolved in parallel to the manufacturing preparation phase
 - 1) Multiple mixed SPI for RE avoidance: Jitter for Ne/H mixed injection
 - 2) Staggered injection scheme: Efficacy of Ne-doping? Viable for low-W_{th} plasma (seeding, W-acc.,)?
 - 3) RE impact mitigation: Boundaries for benign termination (lower/upper limits, I_{RE}-dependence)?
 - 4) Pellet size optimization: Need to cover range of plasmas. Compatibility with RE benign?
 - 5) Routine operation of ITER DMS-like SPI on a tokamak
- Design needs to be tailored for the type of plasma and disruption phase
 - → impacts choice for shattering geometry, pellet size, velocity (and fragment size)
- DMS is highly flexible and ITER 2024 baseline plan allows for full optimization of shattered pellet injection for disruption mitigation

Backup

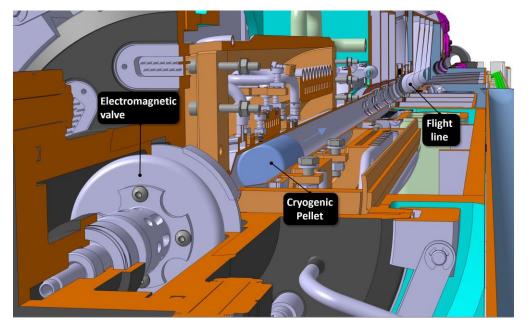
Material assimilation – Fragment sizes

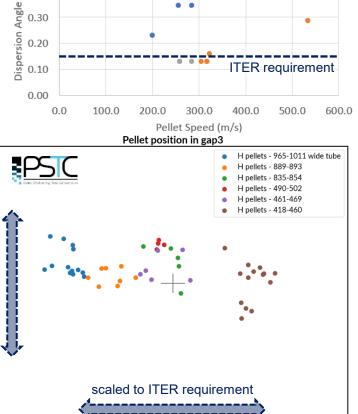

- 1D-INDEX simulations: enhanced assimilation large fragment size distribution
- AUG-SPI: similar trend for deuterium SPI into H-mode
- Cases with degraded confinement (e.g. W-accumulation) remain to be studied


→ Better assimilation for larger fragments

Flight trajectory

- ☐ Maximum tolerable deviation from ideal pellet trajectory is 0.15°.
- ☐ Tests being conducted to assess and minimise deviation


Cut through flight line


Target measurements (ORNL)

Flight trajectory

- ☐ Maximum tolerable deviation from ideal pellet trajectory is 0.15°. ☐ 0.40
- ☐ Tests being conducted to assess and minimise deviation

Cut through pellet flight line

Horizontal position [mm]

20

Vertical position [mm]

-20

-30

-20

4.6K, FPV

20

Disruption mitigation functions:

DMS action to result in disruptions with Cat-I electromagnetic loads and Cat-I heat loads
 → No consumption of disruption budget

Disruption mitigation methods:

Heat loads:

- Limit conducted energy of W_{th} during TQ to 20MJ through line radiation (pure Ne>8x10²¹)
- Dissipate W_{mag} during CQ through line radiation (pure Ne>2x10²¹)
- → W-first wall: targets can be relaxed

EM-loads:

- Control current decay time >50 ms and <150 ms (5x10²¹< Ne < 3.5x10²²)
- → W-first wall: aim at upper current decay time limit to minimize RE generation due to avalanching

RE-avoidance:

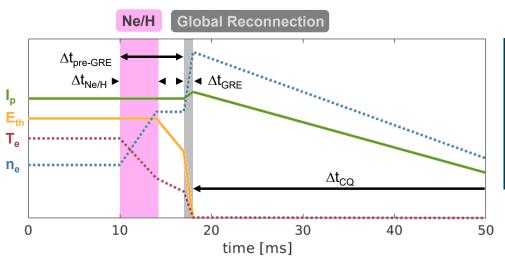
• Densify (raise n_e) and reduce T_e, e.g. through dilution cooling (H>2x10²³-2x10²⁴)

RE-impact mitigation: either through collisional drag (Ne) or recombination (H)

→ Inertially cooled W-FW: test low-Z and high-Z mitigation schemes

DMS Functional specifications

- Material delivery to the plasma:
 - required amount of low-Z (H or D) and high-Z (Ne)
 - pellet size and number of pellets/injectors,
 - injection scenarios, maximum jitter of pellet/fragment arrival
 - compatibility of injection schemes for various mitigation tasks
- Mass assimilation:
 - optimum fragment size and velocity distribution (pellet velocity, shatter angle) for pre-TQ and post-TQ injections
 - injection trajectory for different disruption types and activation times

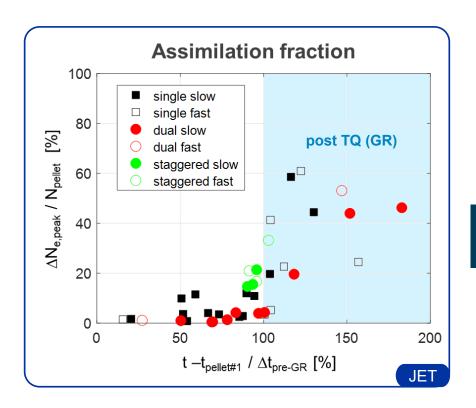

DMS Functional specs – Total Mass

- □ Total mass *delivered* to plasma: $\geq 5x10^{24}$ H and $\geq 1x10^{25}$ Ne-atoms
- Required assimilated quantities:

Function		Species	Quantity [atoms]	Injection Time	Reference
1	Thermal load mitigation Thermal Quench	Ne	>8x10 ²¹ (pure Ne) >1x10 ²¹ (with H)	pre-TQ	3D fluid simulations
2	Thermal load mitigation Current Quench	Ne	> 2x10 ²¹ (pure Ne)	pre-TQ or post-TQ	DINA
3	EM load mitigation Current Quench	Ne	> 5x10 ²¹ < 3.5x10 ²² (pure Ne)	pre-TQ / post-TQ	DINA
4	RE avoidance (collisional drag)	Н	~2x10 ²³ (non-nuclear) ~2x10 ²⁴ (DT-ops)	pre-TQ	1D simulations
5	RE impact mitigation (high-Z)	Ne	~1x10 ²⁵	post-TQ	DINA
5	RE impact mitigation (low-Z)	Н	~8x10 ²³	post-TQ	Simulations of RE + neutrals

Injection scenarios – Mixed

Ne/H mixed SPI pellets: standard for pre-TQ injection



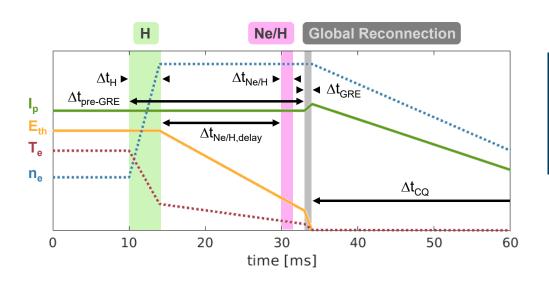
Mixed Ne/H:

- Protium delivered together with neon
- Late density rise
- Limited plasma cooling before GRE (TQ)
- Fast energy loss

- ➤ Multiple mixed SPI for RE avoidance:
 - Jitter constraint for Ne/H mixed injection for large range of plasmas

Mixed injection – Density rise

JET Neon + Deuterium

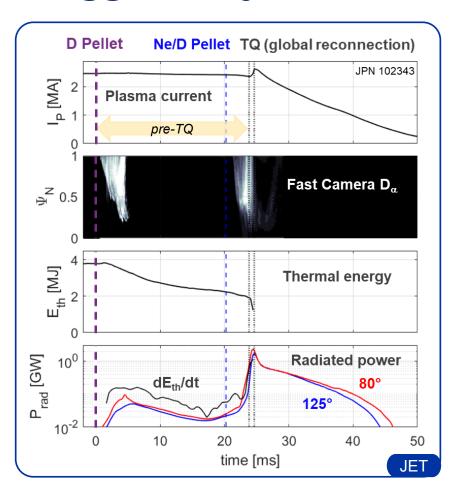

~300/450 m/s 2.5 / 3.0 MA 4 / 8 MJ (H-mode)

- Main density rise after global reconnection
 - → Runaway avoidance difficult

JET SPI science meeting Feb 2024

Injection scenarios – Staggered

Staggered: H-pellet followed by Ne/H-pellet

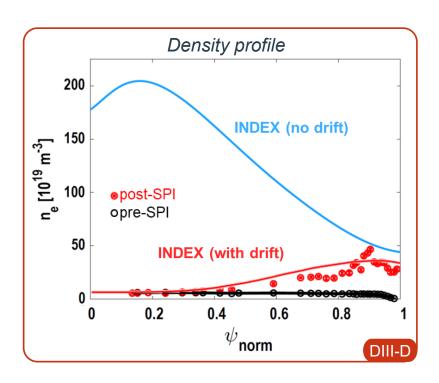


Staggered H + Ne/H:

- Global density rise
- Dilution cooling
- Slow energy loss

- ➤ Multiple SPI for RE avoidance:
 - Viability of staggered injection scheme?

Staggered injection


JET Staggered D + Ne/D

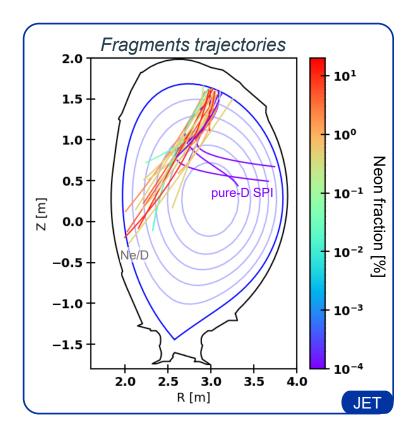
~350 m/s 2.5 MA 4 MJ (H-mode)

- 50% energy loss
- Dilution cooling to ~100 eV
- High radiation during TQ
- Current quench control

Staggered injection – Deuterium assimilation

Mass assimilation strongly limited by plasmoid drift

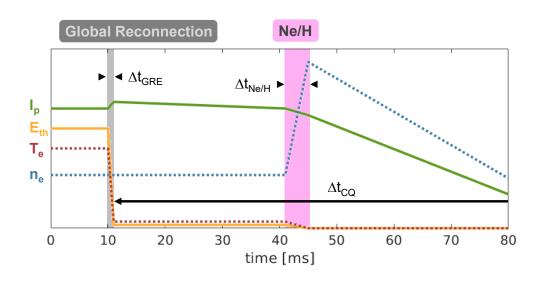
DIII-D Deuterium SPI


540m/s | 1.25 MA | 0.8 MJ (H-mode)

INDEX simulations with back-averaging drift model

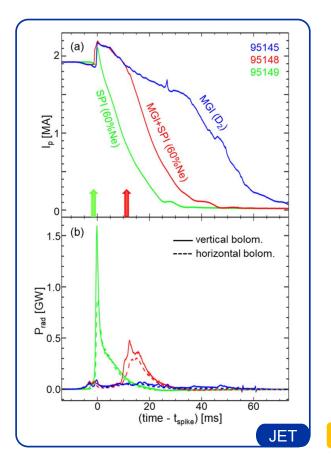
- Drift reduces assimilation to ~10%
- Similar observation in ASDEX-Upgrade

A. Lvovskiy, A. Matsuyama, NF 2024


Plasmoid drift mitigation

- Trajectory with maximum emission in fast camera observation identified
- Scan of neon-fraction from 0 10%

- Adding Ne > 0.1% reduces outward drift
- Plasmoid and rocket effect:
 - *Methods for reduction (Ne-doping?)*
 - HFS-like injection beneficial?


Injection scenarios – post-TQ

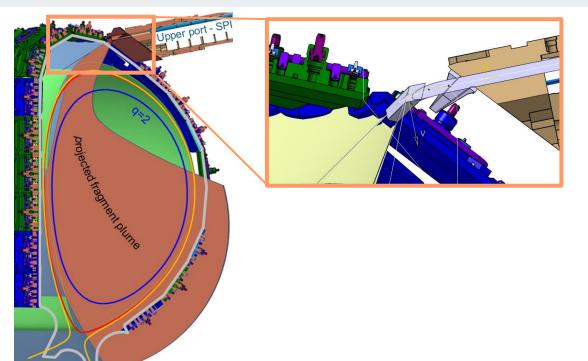
Post-TQ injection

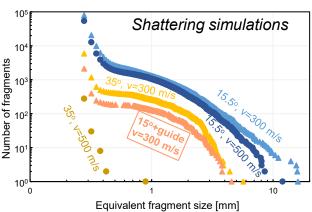
- CQ heat and EM load mitigation
- High assimilation required despite low energy plasma

Injection scenarios – post-TQ

JET post-TQ injection

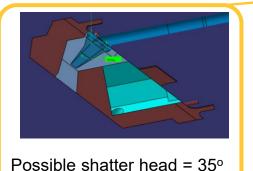
~550 m/s 60%Ne SPI 2.0 MA

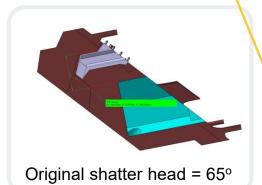

- JET X_R ~350 (20°), η_{gas}~95%
- ITER $X_R \sim 110 (35^\circ)$, $\eta_{gas} \sim 60\%$
- Smaller X_R in ITER, but also larger T_e

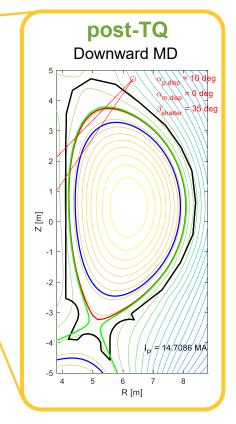

 X_R prescribes fragment size probability distribution: $X_R \propto \text{smaller fragments}$

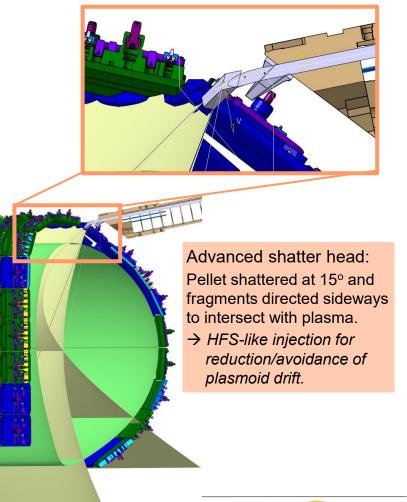
S. Jachmich, NF 2022

Injection geometry – upper ports

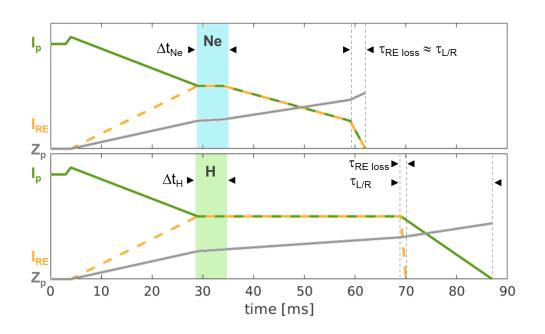

- Low Te in post-TQ injections requires small fragments and large gas fraction → steep impact angle
- But: plastic deformation of shattering unit over ITER operation lifetime
 - → Revised design with double shattering geometry pointing toroidally





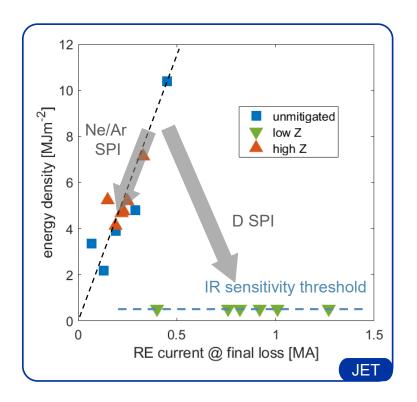

DMS Upper Ports – shattering

Shatter pellets at low angle (15°) and guide fragments towards HFS to overcome plasmoid drift



Injection scenarios – RE impact mitigation

RE beam injection


High-Z SPI:

- Neon SPI dissipates some energy
- Still significant impact during final loss

Low-Z SPI:

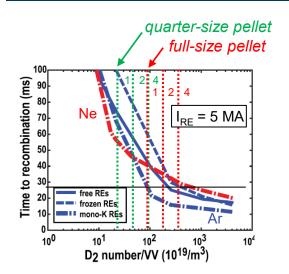
- H SPI leads to fully benign termination
- Purging of Neon (from earlier SPI)
- Triggering of fast MHD instability
- Expulsion of REs prior impact
- No re-avalanching
- Broad wetted area

RE impact mitigation

JET RE beam injection

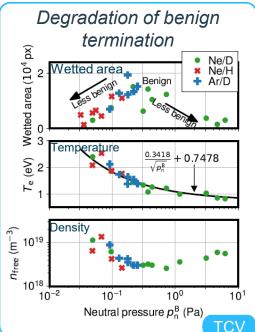
Ne or Ar injection:

→ finite energy deposition

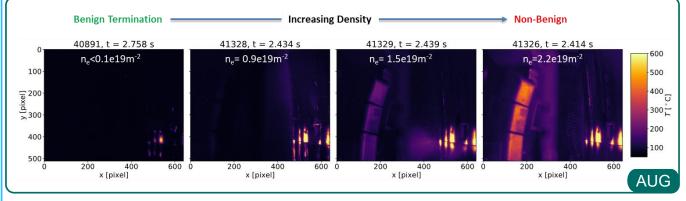

D injection:

→ no measurable heat load despite higher I_{RE}

C. Reux, PPCF 2022


low-Z benign termination – lower limit

- Vertical movement of RE beam limits time for recombination: large pellets beneficial
- Small pellets effective up to I_{RE}~5MA
- Ne-amount injected for TQ and CQ mitigation defines required H-amount


E. Hollmann, NF 2023

low-Z benign termination – upper limit

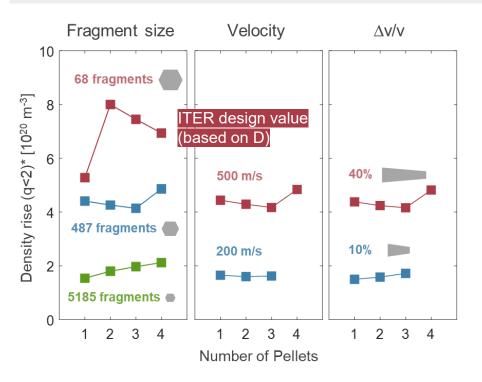
U. Sheikh, PPCF 2024 M.Hoppe, subm. PPCF

- RE avoidance scheme might cause too high neutral pressure
- Density rises again with neutral pressure due to reionization
- Reduces MHD growth and inhibits benign RE beam termination

> RE impact mitigation:

- Boundaries for benign termination (low/up limits, I_{RE} -dependence)?
- Optimisation of injection (train of small H-pellets)?
- Any benefit from high-Z injection?

Total Mass – Number of pellets


- □ Total mass *delivered* to plasma: $\geq 5x10^{24}$ H and $\geq 1x10^{25}$ Ne-atoms
- Required number of pellets EP-injectors (total of 24):

Injection scheme	Species and <i>assimilated</i> quantities	Number of required pellets	Port (Direction)	Redundancy
Staggered (H, then Ne/H)	2x10 ²³ H (non-nuclear)	2 (15% assim.)		
	2x10 ²⁴ H (DT-ops)	8 (15% assim.)	Tangential	
	3.5x10 ²² Ne (max)	3 (diff. toroidal locations)		
Mixed	3.5x10 ²² Ne (max) + 3x10 ²⁴ H	3 (50% assim., diff. toroidal loc.)	Tangential	
RE high-Z	10 ²⁵ Ne	14 (100% assim.)	Up+Down	
RE low-Z	5x10 ²³ H	2	Up+Down	
Total in EP ready to fire (max 24)	Staggered + high-Z	19 (non-nuclear) or 25 (DT-ops)		5 or -1
	Mixed + high-Z	17		7
	Staggered + low-Z	7 (non-nuclear) or 13 (DT-ops)		17 or 11
	Mixed + low-Z	5		19

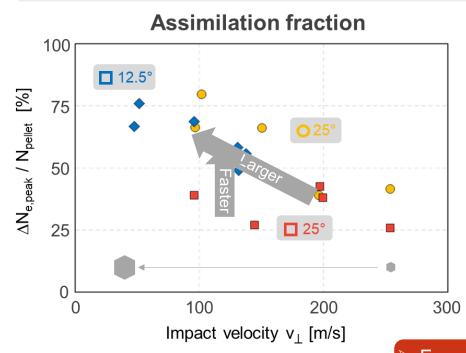
Mass assimilation

Fragment plume characteristics

Delivered pellet fragment size range: ≥ 0.5 mm and ≤ 5 mm

ITER / INDEX Neon + Deuterium SPI

15 MA 35 MJ (L-mode)


- Larger Fragments
- Higher Velocity
- Longer Plumes

A. Matsuyama, ITER_D_53DK9S

^{*}before the global reconnection

Fragment size distribution

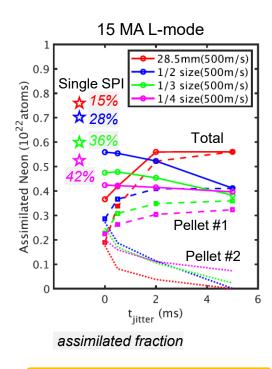
□ Delivered pellet fragment size range: ≥ 0.5 mm and ≤ 5 mm

ASDEX Deuterium SPI

0.8 MA | 0.6 MJ (H-mode)

3 different shatter tubes: ○ 25° □ 25° □ 12.5°

Assimilation from peak density (upper estimate)

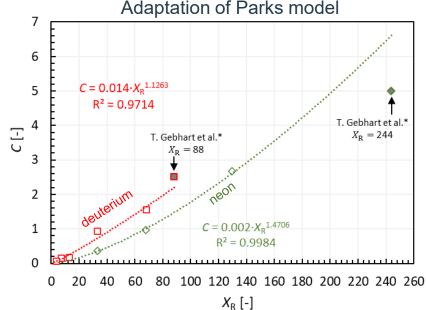

Enhanced assimilation

- Larger Fragments
- Higher Velocity

S. Jachmich, EPS 202

Fragment plume characteristics:
Optimum for large range of plasmas (seeding, instabilities, ...)?

Mass assimilation – Pellet size



A. Matsuyama, ITER_D_53DK9S

- Very low assimilation fraction for full-size pellets in L-mode
- Smaller pellet helps assimilating second pellet (also longer pre-TQ)
- Pellet size optimization:
 - Better assimilation for low W_{th}-plasmas?
 - Compatibility with RE benign termination?

Pellet fragmentation

- Parks' model: $f(d) = \alpha dK_0([X_R/(L * C)] d)$; parameter C for PDF determined empirically for D and Ne
- Comparison with AUG-SPI lab experiment suggests dependence on X_R(=v_⊥²/v_{thr}²)
- Extrapolation compatible with original estimate
- But: C likely depend on more parameters (shatter head cross-section, pellet size, ...)

→ Improved predictions of fragment size distribution (FSD) with Statistical fragmentation model

Optimum pellet sizes

	Staggered	Mixed	RE mitigation	
Baseline size 28.5 mm x 57 mm	Required to overcome reduced H assimilation at higher E _{th}	Synchronisation for multiple SPI too challenging	Re-ionisation due to too much mass (upper pressure limit)	
		Unnecessary VV pressure loading (low ablation fraction)		
Quarter Size 20 mm x 30 mm	May require too many pellets for H assimilation at higher E _{th}	Allows testing and applying multiple SPI at low/medium E _{th}	Likely essential, more flexibility in dosing (upper pressure limit)	
		Reduced VV pressure loading at low/medium energies		

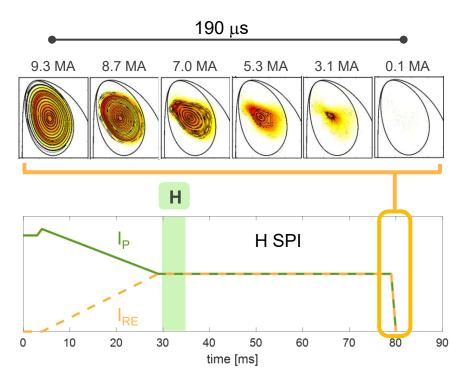
- Two different pellet sizes → further assessment required to conclude
- Number of injectors is sufficient if low-Z RE mitigation is chosen

Summary of required R&D for ITER DMS

In addition to R&D mentioned above:

- Effect of vertical displacement during CQ on RE generation
- Alternatives for injection techniques (e.g. rail-gun) and for disruption mitigation methods

Outlook


- DMS enters manufacturing preparation phase:
 - Some design changes (e.g. pellet size) can still be implemented.
 - Studies on optimizing injection schemes are still required to help minimizing DMS commissioning time
- ITER DMS Task Force:
 - IO decided to continue the Task Force to coordinate the resolution of remaining issues and to support established collaborations.

Summary of required R&D for ITER DMS

- Effect of vertical displacement during CQ on RE generation
- Alternatives for injection techniques (e.g. rail-gun) and for disruption mitigation methods
- Multiple mixed SPI for RE avoidance:
 - Jitter constraint for Ne/H mixed injection for large range of plasmas
 - Viability of staggered injection scheme?
- Plasmoid and rocket effect:
 - Methods for reduction (Ne-doping?)
 - HFS-like injection beneficial?
- RE impact mitigation:
 - Boundaries for benign termination (lower/upper limits, I_{RE}-dependence)?
 - Optimisation of injection (train of small H-pellets)?
 - Any benefit from high-Z injection?
- Pellet size optimization:
 - Better assimilation for low W_{th}-plasmas?
 - Compatibility with RE benign termination?
- Fragment plume characteristics:
 - Optimum for large range of plasmas (seeding, instabilities, ...)?
- Development of RE beam scenario

RE mitigation – low-Z benign termination

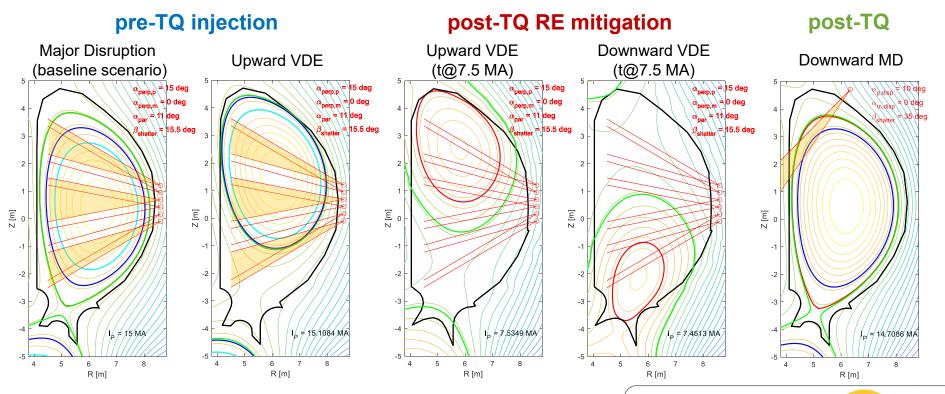
JOREK 3D RE fluid / ITER

RE mitigation by H/D SPI successful in experiments

H SPI flushes Ne

no RE reformation

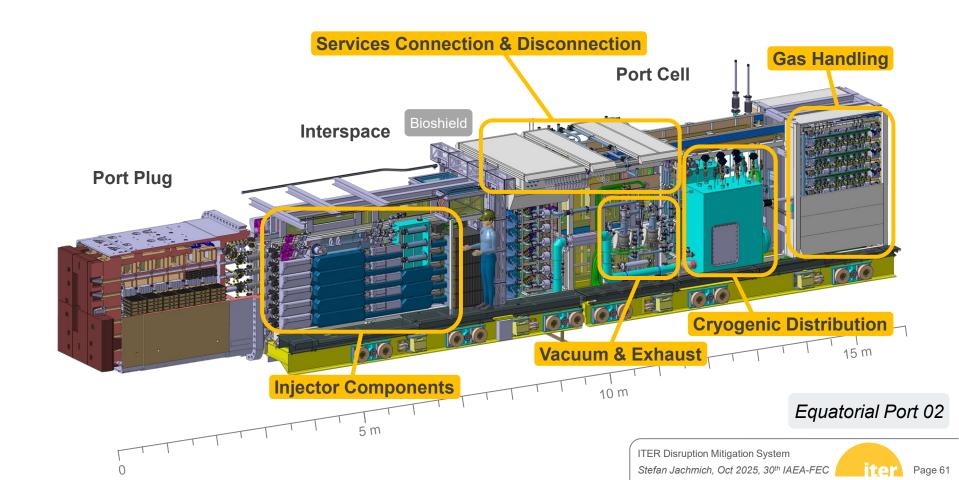
High density and resistivity

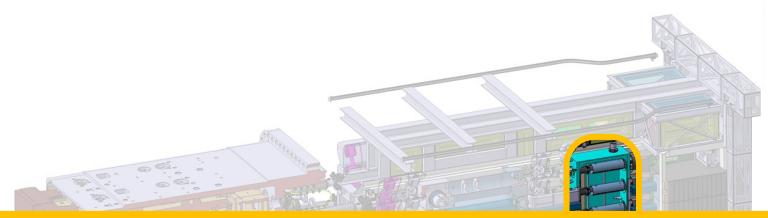

more violent MHD

larger RE footprint

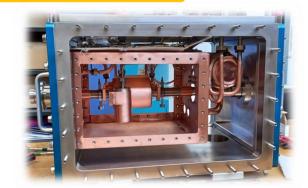
E. Nardon, IAEA FEC 2023 V. Bandaru, NF submitted 2024

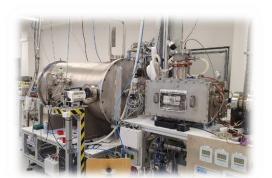
Injection trajectories


Intersect with plasmas that are vertically stable or vertically displaced


ITER DMS design requirements

Parameter	Requirement	Component
Amount of injected material	≥ 5x10 ²⁴ H-atoms and ≥ 1x10 ²⁵ Ne-atoms	Pellet size, # of injectors
Maximum H-shell thickness for Ne-pellets	≤ 5% Ne-atoms	Launch Ne-pellets with max 0.25 mm H-shell
Jitter in pellet delivery	\leq 2 ms (= Σ variation of v_{pellet} , breakaway,)	Propellant, breech volume,
Fragment injection duration	\leq 2 ms (=> $\sigma_{v,frag}$ <~ 60-80%)	Shatter unit (fragment velocity distribution and intact pellets)
Pellet flight time	≤ 50 ms (=> v _{pellet} >120 m/s)	Propellant valve
EP-only: maximum gas production	≤ 20% of pellet material	Shatter unit + v_{pellet} (\rightarrow low impact vel.)
UP-only: fragment size distribution	Predominately < 0.5 mm (maximum gas)	Shatter unit + v_{pellet} (\rightarrow high impact velocity)

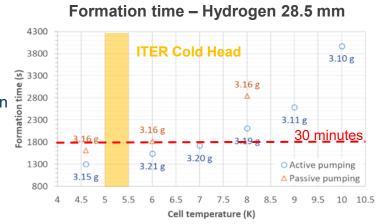

ITER Disruption Mitigation System


ITER DMS: Cold cell assembly

Pellet formation

TYFANIES (CEA-Grenoble)

DMS Support Lab (CER Budapest)



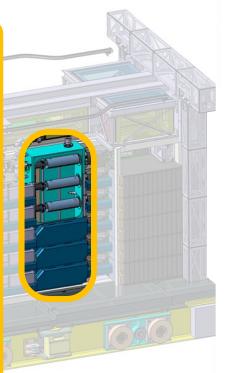
ITER SPI test bed (ORNL)

ITER DMS: Cold cell assembly

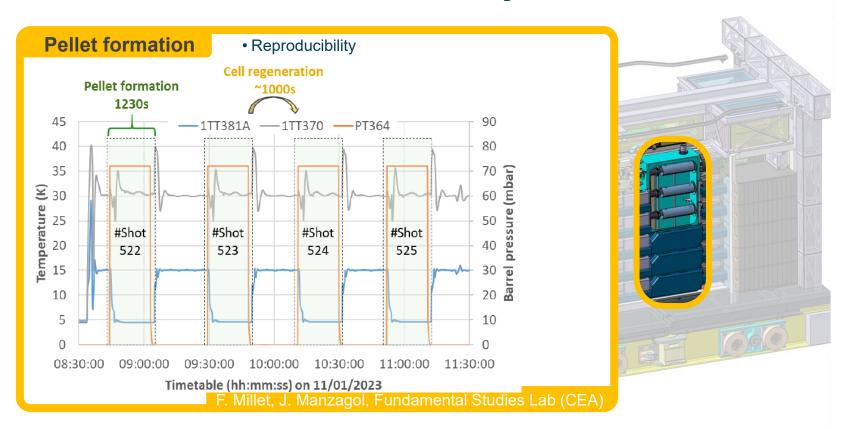
Pellet formation

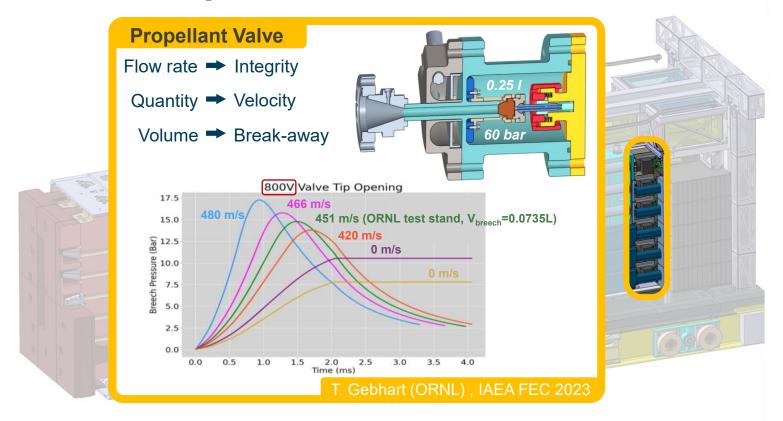
- Temperature
- Pressure
- Desublimation duration
- Gas injection configuration
- Gas pumping
- Pellet thermalisation

24 mbar / 4.7 K



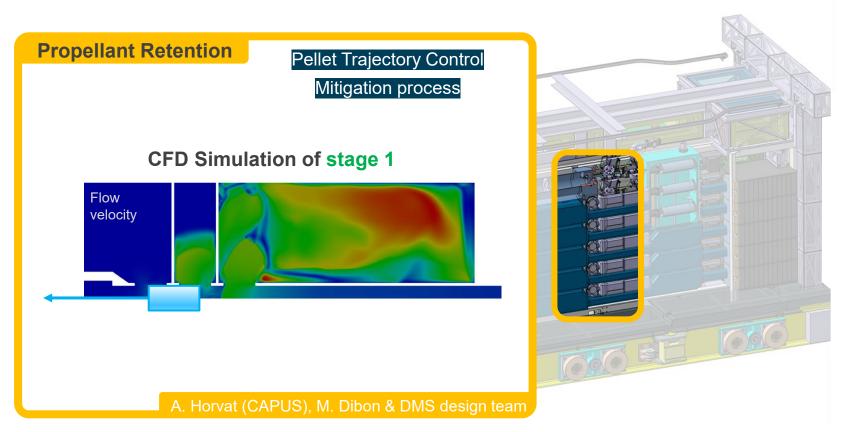
72 mbar / 4.7 K


72 mbar / 10 K



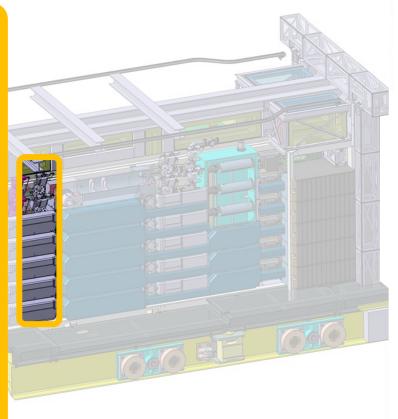
ITER DMS: Cold cell assembly

ITER DMS: Propellant Valve


ITER DMS: Propellant gas retention

Design being tested in ORNL, Support Lab and CEA

ITER DMS: Propellant gas retention



ITER DMS: Fast shutter as backup

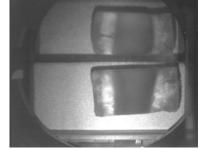
A. Zsakai (CER)

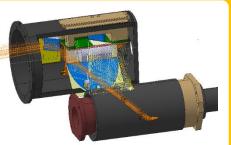
Propellant Retention Closes within 2ms after pellet Prototype built and tested for >10,000 cycles Triggered through OPD DMS Shutter Test Series 20240327 105246 1000 Cycle test Magnetic Rotary Feedthrough Closing time SE 2.15 Maximum velocity [s/w] ^ Impact velocity 0.05 Flight Tube primary temperature Eddy Current 200 800 1000

Shotnumber #

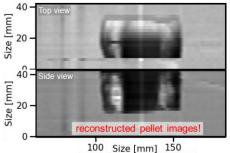
ITER DMS: Optical pellet diagnostic

Optical Diagnostic

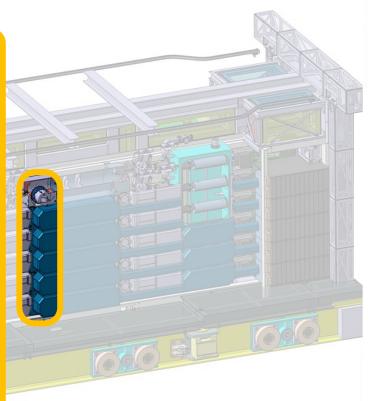

Integrity


Trajectory

Fast Shutter

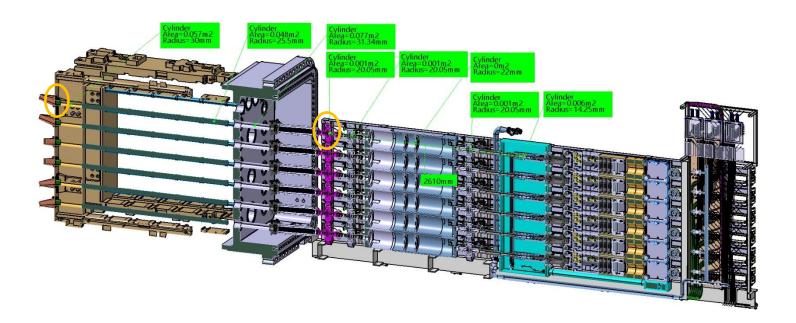

Velocity

CMOS camera



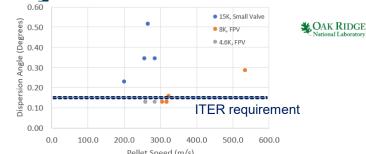
Photodiode array

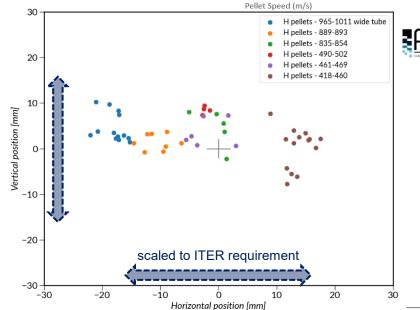
D. Dunai, S. Zoletnik et al, Fusion Instruments

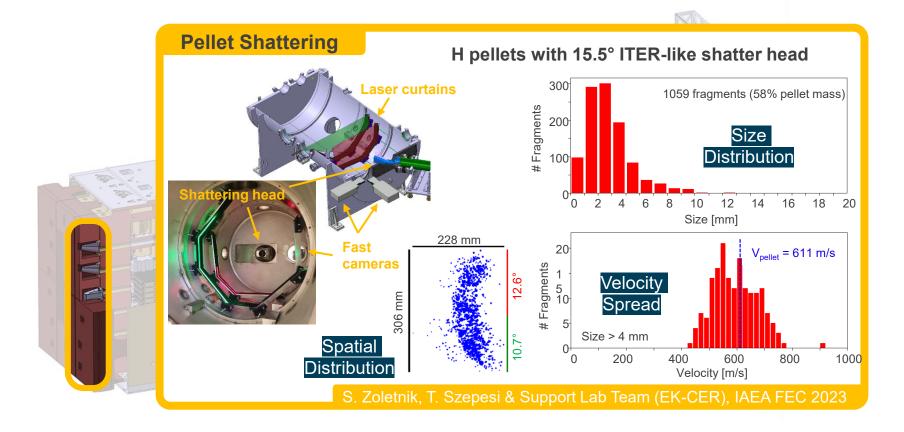


ITER DMS: pellet trajectory accuracy

Flight path restricted by gate valve and shatter chamber entry:


EP: 0.15° for 40mm gate valve and 0.15° for 60mm shatter chamber entry


UP: 0.15° for 40mm gate valve and 0.21° for 90mm shatter chamber entry.


ITER DMS: pellet trajectory accuracy

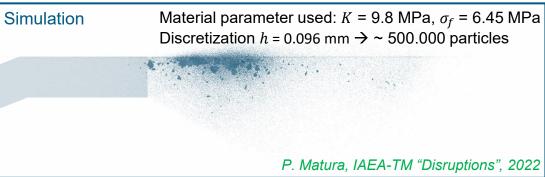
- Initial test firing on target disc (ORNL):
 - Taking into account potential misalignment
 → dx~±0.11°, dy ~±0.21° based on large D-pellets
 - Measurements with new FPV are ongoing
- Support laboratory (CER):
 - Pellet position assessed in last observation prior shatter chamber entry
 - Data are grouped by test bench interventions
 - Deviation within limits required for ITER-DMS
 - Empirical observation: all pellets are reaching shattering chamber

ITER DMS: Shatter chamber

Page 72

ITER DMS: Shattering validation

- "Pellet shattering simulation" (EMI-Fraunhofer/Germany):
 - model based on Discrete Element Method
 - experimental data (AUG-SPI, ORNL, Support Laboratory, ...) → determine material properties
 - → validate fragmentation model


- simulation: 3D-characteristic of fragment plume experiment: limited sensitivity and resolution
 - → synthetic diagnostic

Rendered image of simulation

Neon pellet, \emptyset 8 mm, L/ \overline{D} ~1.1, v~160 m/s, 25° (AUG-SPI lab #718)