

2758: The Divertor Tokamak Test Facility: Machine design construction and commissioning 2939: Design and qualification activity of the first divertor of the Divertor Tokamak Test Facility

GIAN MARIO POLLI & SELANNA ROCCELLA

DTT S.c.a r.l., ENEA NUC, C.R.Frascati
On behalf of the colleagues contributing to DTT project

30th IAEA Fusion Energy Conference

Chengdu, People's Republic of China

October 13-18, 2025

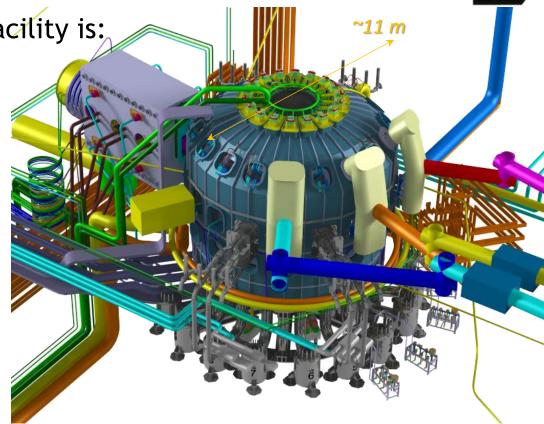
DTT Consortium (DTT S.C.a r.l. Via E.Fermi 45 I-00044 Frascati (Roma) Italy)

Outline

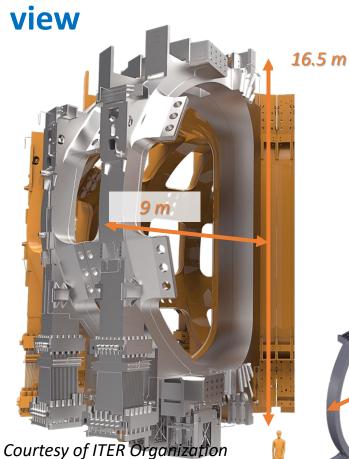
- Introduction
- Status of DTT tokamak design and construction
- Divertor system qualification and construction plan
- Concluding remarks

What's DTT?

DTT = Divertor Tokamak Test facility is:


a breakeven-class tokamak,

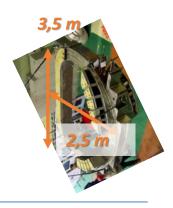
 fully superconducting to allow pulses of the order of 100s,


- with water cooled, tungsten plasma facing components
- designed to be flexible

For the development of credible solutions for the effective and reliable management of the power exhausts



DTT compared to other machines: an engineering point of



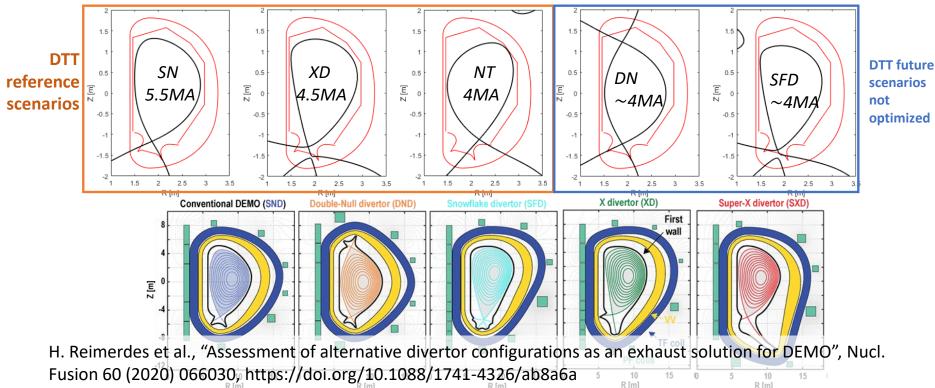
	ITER TFC	JT-60SA TFC	DTT TFC	KSTAR TFC	EAST THC
Material	Nb ₃ Sn	NbTi	Nb₃Sn	Nb ₃ Sn	NbTi
B max [T] on conductor	11,8	5,65	11,9	7,2	5,8
I_turn [kA]	68	25,7	42,5	35,2	14,3
Turns	134	72	84	56	130
Major radius [m]	6,2	3,0	2,19	1,8	1,7
B max @ R [T]	5,3	2,3	5,85	3,5	3,5

DTT compared to other machines: a physics point of view

नि

DTT aims at providing a

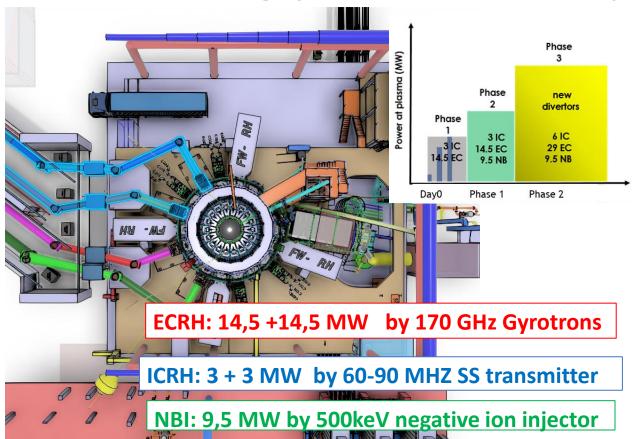
unique, flexible, integrated
environment, relevant to


DEMO, where to test
divertors with:

- novel HHF components;
- in a highly radiative plasma scenario;
- developing alternative plasma scenario shapes;
- utilizing liquid metals

	AUG	JET	DTT	JT60-SA	ITER	DEMO
R (m)	1.65	3.0	2.19	2.96	6.2	9
a(m)	0.5	1.0	0.70	1.18	2.0	2.9
Ip (MA)	1.6	4	5.5	5.5	15	19.5
B _T (T)	3.1	3.45	5.85	2.25	5.3	5.7
Vp (m³)	13	80	28	131	853	2218
<n> (10²⁰ m⁻³)</n>	1	1	1.8	0.56	1.0	0.8
P _{Tot} (MW)	27	40	45	41	150	450
P _{SOL} (MW)	22	32	33	32	120	150
P _{SOL} /R (MW/m)	13	11	15	11	19.3	17
P _{SOL} B/R (MW*T/m)	40	37	88	24	102	99
τ _E (s)	*	*	0.42	0.48	8.5	3.4
<t> (keV)</t>	2	5	6.2	6.3	8.5	12.7
β (%)	*	*	3.1	3.1	2.2	2.5
ν*(10 ⁻²)	*	3.5	1.8	1.8	3.8	2.1
ρ*(10-2)	*	2.2	2.7	2.0	0.9	0.8

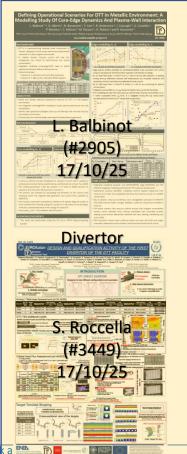
DTT scenarios flexibility



DTT magnetic system can realize all foreseen Alternative Divertor Configurations considered for DEMO

Additional heating systems: the installation plan

Tasks	EC	IC	NBI
Break down & Plasma start up	Χ	Χ	
Plasma Current Ramp up	Χ	Χ	Χ
H-mode access	Χ	Χ	Х
Electron Heating	Χ	Χ	Χ
Ion Heating		Χ	Х
Current Drive	Χ		Χ
MHD Control (NTM and ST)	Χ	Χ	
Fast Particle Generation		Χ	Х
Kinetic Profiles Control	Χ	Χ	
Impurity Accumulation Avoidance	Χ	Χ	Х
Momentum injection & Control		Χ	Х
Transport Studies	Χ	Χ	Х
Isotopic Studies			Х
Diagnostics	Χ		Χ
Wall Cleaning and Conditioning	Χ	Χ	

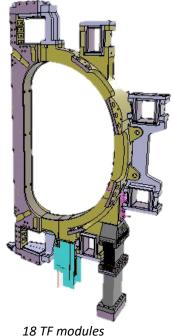

Courtesy of G.Granucci & HCD team

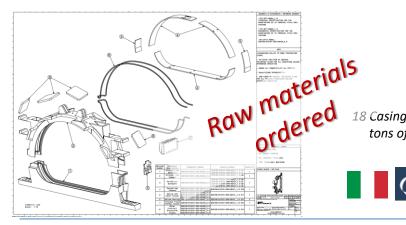
DTT at this conference

Outline

- Introduction
- Status of DTT tokamak design and construction
- Divertor system qualification and construction plan
- Concluding remarks

TF coil magnet system: supply chain




(ICas)

(75% unit lengths delivered)

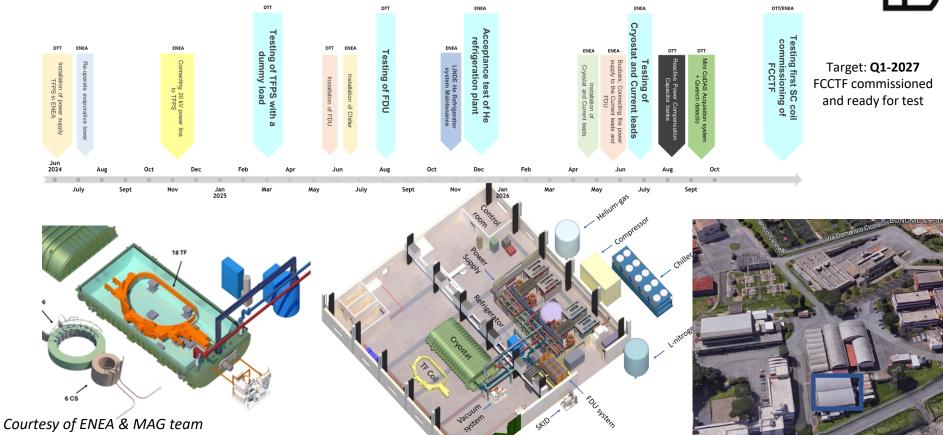
18 Casing components (~360 tons of 316LN material delivered)

TF coils

Casing contract restarted in April 2025

1° Casing to be delivered 01/2027

1° TF module ready in 07/2027


Material	Nb ₃ Sn
B max [T] on conductor	11,9
I_turn [kA]	42,5
Turns	84
Major radius [m]	2,19
B max @ R [T]	5,85

Frascati Coil Cold Test Facility

16/10/2025

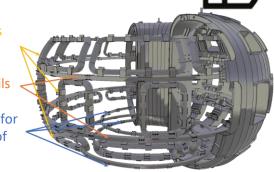
or qualification and construction

2758 & 2939 - DTT tokamak

TF power supply

- AC/DC converter (42.5 kA at 100 V, manufactured by JEMA): initiated in 2022, completed and provisionally installed at the Frascati Coil Cold Test Facility (FCCTF).
- ✓ Fast Discharge Units (FDUs): The FDUs, which use SiC varistors for a 10-second linear current reduction, manufactured by OCEM Power Electronics. The first of three identical units has been finalized, shipped, and is scheduled for setup at the FCCTF by late 2025

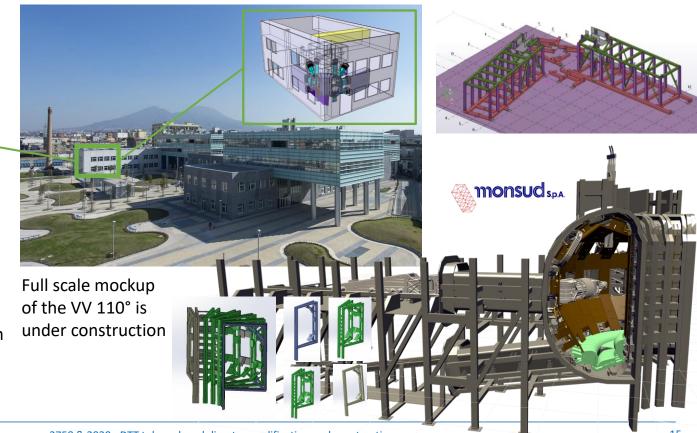
In-vessel coils and related power supplies



Parameter	DIV	VS	NAS
N.	3	2	27
Nominal current	±5 kA	±6 kA	±2.5 kA
Nominal voltage	±600 V	±4 kV	±550 V
Nominal duration	40 s	100 s	100 s

2 axisymmetric stabilization coils

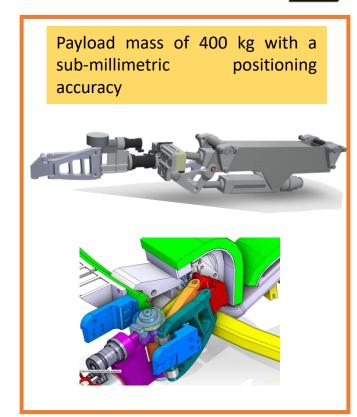
3 divertor coils for fine sweeping of strike point



Remote handling system: Remote Handling Training facility (REMHAT)

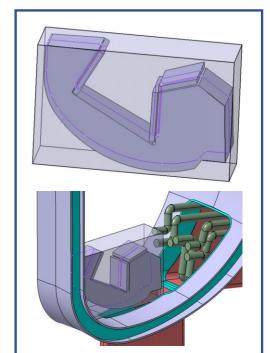
REMHAT – Remote Handling Training Facility is a facility under preparation inside University of Naples by ENEA envisaged to provide a platform where to develop RH procedures before, during and after DTT start of operations

Remote handling system: Hyrman and CMM

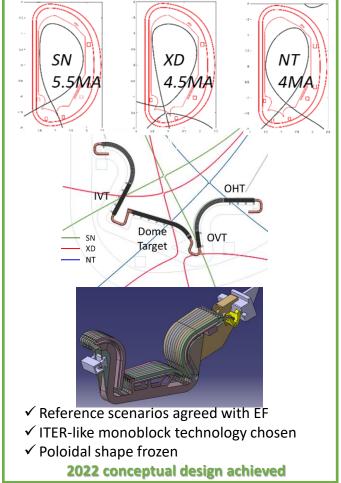

- ✓ Between March and May 2024 two contracts have been placed to OCIMA S.p.A., for the supply of:
 - 2 HYRMAN for the RH of the first wall
 - 3 CMM for the RH of the divertor

Availability of Hyrman and CMM from the beginning will allow their use during assembly

Delivery in H1 2026



Outline


- Introduction
- Status of DTT tokamak design and construction
- Divertor system qualification and construction plan
- Concluding remarks


DTT first divertor

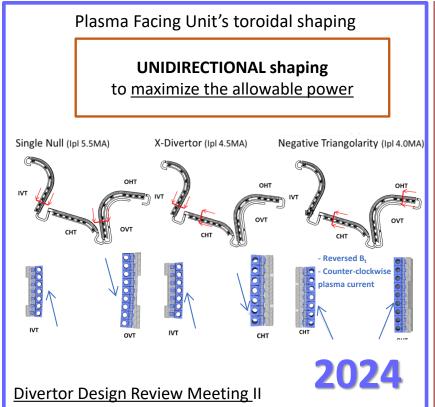


- 50 standard modules
- 4 test modules

2021 pre-conceptual design

IR Camera: 1st pulse (a), 500th pulse (b) 1000th pulse at 20 MW/m² (c).

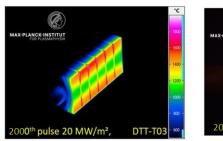
1000 pulses at 20 MW/m² with **no degradation**

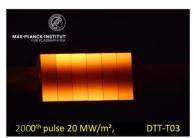


Baffle and flat-tile for 90° transition mock-ups manufactured

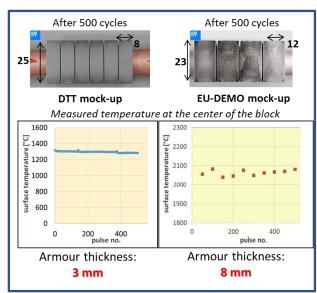
2023 design validation confirmed

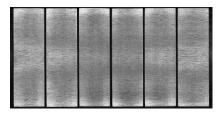
DTT first divertor





20 MW/m² Tests in GLADIS @ IPP-Garching





20 MW/m² in steady state (after 2000 pulses) with no damage

No cracks or surface plastic deformation after 7 hours total at high temperature

After **2000** x **20** MW/m²

Divertor cassette and Plasma facing units

Knuckle Test Rig-Wedges Fixation System Test Rig

Tooling for PFU full scale prototype acquired

Call for tender under preparation:

- Cassette body
- W monoblocks for IVT PFU (~50000)

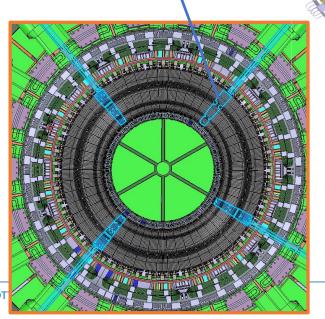
Divertor system

54 actively water-cooled **modules** (3 for each 20° sector) and supplied in parallel.

Water Cooling System:

inlet pressure: 5MPa

total mass flow rate up to: 577 kg/s (11m/s in the PFU pipes)

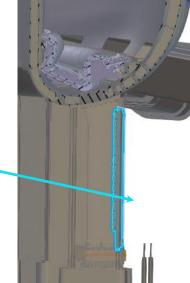

inlet temperature: within 30-130°C

The 4 central cassettes in the RH ports to test materials, technologies and diagnostics.

This central cassettes are easily replaced and supplied by a **dedicated water cooling** system (43 kg/s; up to

250°C, up to 15 MPa)




Divertor system

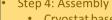
The **4** central cassettes in the RH ports to test materials, technologies and diagnostics.

This central cassettes are easily replaced and supplied by a dedicated water cooling system (43 kg/s; up to

10 Cryopumps will provide target deuterium throughput equals to 103 m3/s
Operable in 3/4/6/7/10 groups

16/10/2025

2758 & 2939 - DT


2

Assembly contract

Assembly contract organized in 10 steps:

A	ssembly contract organized in 10 steps .	
•	Step 1: engineering:	
	Final assembly procedures development;	2026
	Qualification tooling design;	2020
	Assembly tooling design	
•	Step 2: Tooling manufacturing and installation	2027
•	Step 3: Qualification activities (in particolare nell'F87):	
	Full scale mock-up (like Asdex-U)	
	• In-vessel coils	2027-2028
	VV welding trials	
	Diagnostics assembly trials	
•	Step 4: Assembly	A 1 -

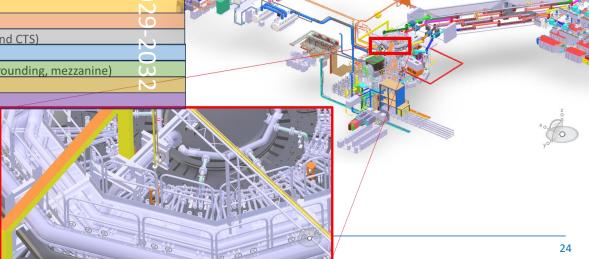
Assembly contract specifications completed Tender preparation in progress

• Cryostat base, PF6-4 + 2 VV sectors

Ex-vessel diagnostics and thermal shield

Step 5 -> TFC assembly

Step 6 -> ex-vessel assembly (ports, cryolines, feeders, cryostat and CTS)


Step 7 -> in-vessel assembly (In-vessel coils, FW, Divertor)

Step 8 -> out-of-cryostat assembly (port plugs, valve box, HCD, grounding, mezzanine)

Step 9 -> Auxiliaries (pumping, WCS, busbars, pipes)

Step 10 -> Integrated commissioning

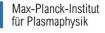
Concluding remarks

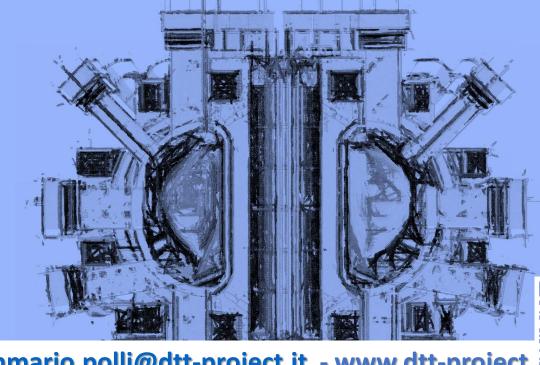
- ✓ A comprehensive set of auxiliary facilities is under preparation for risks mitigation:
 - FCCTF = Frascati Cryogenic Coil Test Facility for testing Nb3Sn coils in relevant full current conditions
 - REMHAT = REMote HAndling Training facility for testing RH systems and procedures
- ✓ TF magnets are in fabrication phase
- ✓ VV procurement has been awarded and the start of activities is expected in few weeks
- ✓ Divertor is moving towards construction phase (after completion of integrated design and qualification activities)
- ✓ Assembly specification is under review and call for tender will be launched soon

DTT will be a **unique**, **flexible**, **integrated testbed** for the testing of power exhaust solutions for the next generation of tokamaks and will foster a new generation of scientists and engineers in the fusion community

Acknowledgments

EF consortium



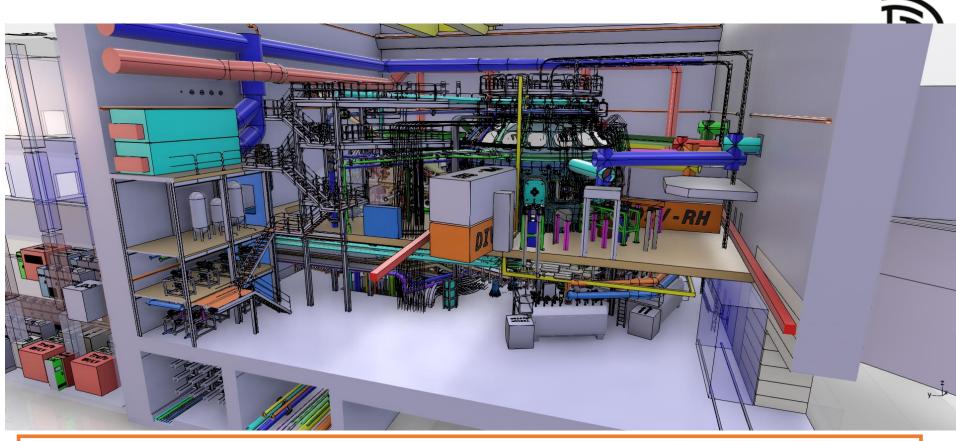


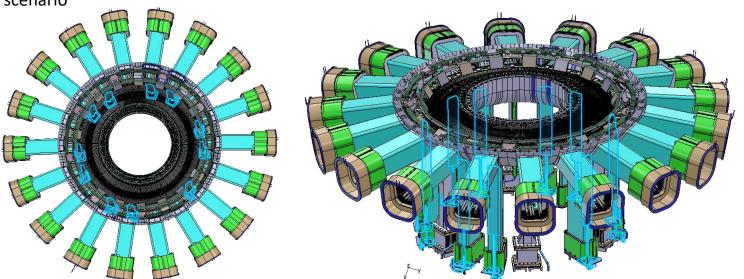
DTT consortium

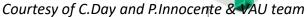
gianmario.polli@dtt-project.it - www.dtt-project.

The Divertor Tokamak Test (DTT) Project

Thank you for your attention

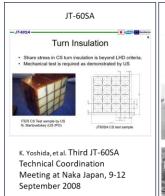


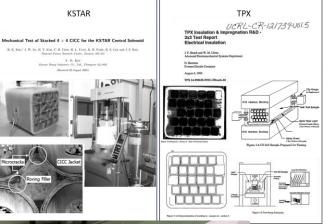


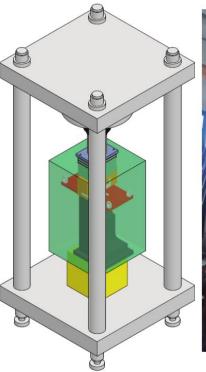


Divertor pumping system

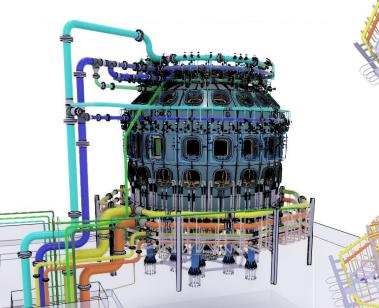
- Divertor pumping system has been completed jointly with KIT.
- Based on cryogenic pumps operated at 4.5 K.
- 10 pumps will provide target deuterium throughput equals to 103 Pa m³/s
- Working pressure between 0.1 Pa and 1 Pa

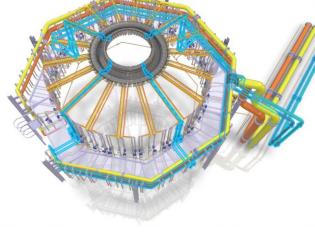

 Modularity requirement (3/4-6/7-10 different pumps operations) for optimal pumping at every scenario

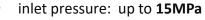




CS coils: testing insulation under loading







Divertor cooling circuit

total mfr up to: up to 43 kg/s

T_in: up to 250°C

Liquid metal divertor (e.g.CPS)

Note: pipes of test modules WCS will be in place from Phase 1, instead pumps and heaters shall be assembled later

• inlet pressure: **5MPa**

total mfr up to: 577 kg/s

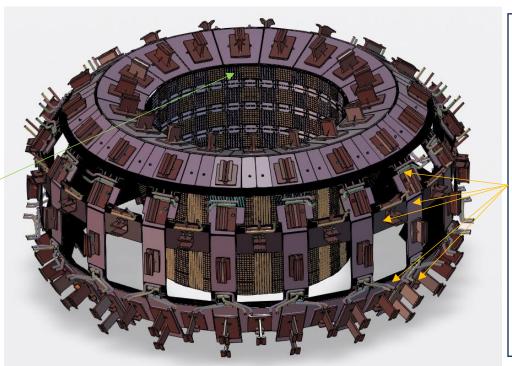
T_in: within 30-130°C

Courtesy of A.Cucchiaro and M.Utili & ASSEMBLY team

DTT first wall: from concept to final engineering design

Limiter modules

W monoblocks (axially thick 30 mm & 12 mm) provided by an OF-Cu interlayer, internally



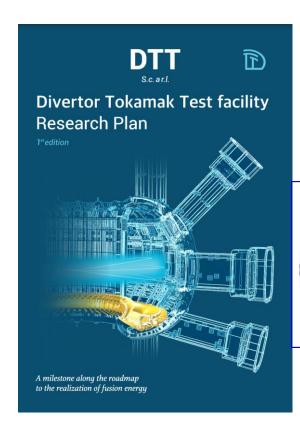
- Oualification tests:

 High heat flux at 10 MW/m²x 2000 cycles;

 Critical heat flux Inlet water conditions: 60°C, 4
- water conditions: 60°C, Mpa, mass flow up to 0,6 kg/s

OFW modules

Selective laser melting additive manufacturing technique fully qualified wrt geometry, mechanical performances, surface roughness



W-coating will be deposited on some mock-ups. Then, a high heat flux campaign will be carried out

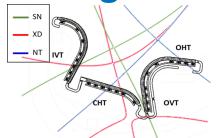
Interactions with ITER on W coating have started

DTT master research plan – first release

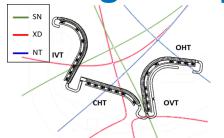
Published on June the 12th 2024 Edited by F. Crisanti, G. Giruzzi and P. Martin

- 9 Chapters
- 9 Appendices
- 195 pages

- Voluntary participation by:
- 100 authors and contributors
- 20 Research Institutes
- 10 countries



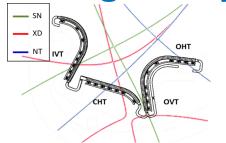
The basis for further development for which the participation of internation qualified institutions and researchers is welcomed


Scenarios as Power increases in the SOL (net of impurity radiation)

		IVT	OVT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD6_SN_1001	7	3,5	4	1,5	0,58	0,34
BD6_SN_1002	7	5	4	1,5	0,89	0,49
BD6_SN_1003	7	7	3,5	1,5	1,32	0,67
BD6_SN_1004	7	14	40,7	47,9	9,1	9,9
BD6_SN_1005	7	25	114,7	85,2	25,3	16,8

		IVT	CHT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD11_XD_1001	7	3.5	1.5	1.6	0.69	0.38
BD11_XD_1003	7	7	35	25.8	2.1	0.4
BD11_XD_1004	7	14	138	121	7.34	1.1
BD11_XD_1005	7	25	230	229	16.4	2.45
BD11_XD_1006	7	35	298	313	25.9	3.95
BD11 XD 1007	7	45	434	448	37.3	5.9

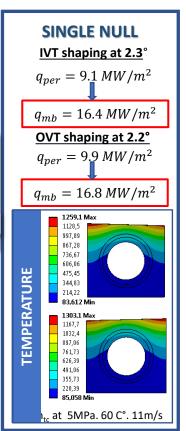
	NEGAT	CHT	OHT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	P_perp_sp2 (MW/m^2)
BD15_NT_1003	6	7	29	68	3.51	1.97
BD15_NT_1004	6	14	112	133	9.34	4.48
BD15_NT_1005	6	25	193	207	8.73	14.81
BD15_NT_1006	6	35	205	236	13.68	27.3


Scenarios as Power increases in the SOL (net of impurity radiation)

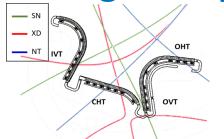
		IVT	OVT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD6_SN_1001	7	3,5	4	1,5	0,58	0,34
BD6_SN_1002	7	5	4	1,5	0,89	0,49
BD6_SN_1003	7	7	3,5	1,5	1,32	0,67
BD6_SN_1004	7	14	40,7	47,9	9,1	9,9
BD6_SN_1005	7	25	114,7	85,2	25,3	16,8

		IVI	CHI			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD11_XD_1001	7	3.5	1.5	1.6	0.69	0.38
BD11_XD_1003	7	7	35	25.8	2.1	0.4
BD11_XD_1004	7	14	138	121	7.34	1.1
BD11_XD_1005	7	25	230	229	16.4	2.45
BD11_XD_1006	7	35	298	313	25.9	3.95
BD11 XD 1007	7	45	434	448	37.3	5.9

	NEGAT	CHT	OHT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	P_perp_sp2 (MW/m^2)
BD15_NT_1003	6	7	29	68	3.51	1.97
BD15_NT_1004	6	14	112	133	9.34	4.48
BD15_NT_1005	6	25	193	207	8.73	14.81
BD15_NT_1006	6	35	205	236	13.68	27.3



Scenarios as Power increases in the SOL (net of impurity radiation)


		IVI	OVI			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD6_SN_1001	7	3,5	4	1,5	0,58	0,34
BD6_SN_1002	7	5	4	1,5	0,89	0,49
DDC CN 1003	7	7	2.5	1.5	1 22	0.67
BD6_SN_1004	7	14	40,7	47,9	9,1	9,9
RD0_2M_1002	/	25	114,/	85,2	25,3	10,8
		V DIVERTOR				CUT

		IVT	CHT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD11_XD_1001	7	3.5	1.5	1.6	0.69	0.38
BD11_XD_1003	7	7	35	25.8	2.1	0.4
BD11_XD_1004	7	14	138	121	7.34	1.1
BD11_XD_1005	7	25	230	229	16.4	2.45
BD11_XD_1006	7	35	298	313	25.9	3.95
BD11_XD_1007	7	45	434	448	37.3	5.9

	NEGA	CHI	OHI			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	P_perp_sp2 (MW/m^2)
BD15_NT_100	3 6	7	29	68	3.51	1.97
BD15_NT_100	4 6	14	112	133	9.34	4.48
BD15_NT_100	5 6	25	193	207	8.73	14.81
BD15_NT_100	6 6	35	205	236	13.68	27.3

Scenarios as Power increases in the SOL (net of impurity radiation)

CHT

q_perp_sp1

(MW/m^2)

3.51

9.34

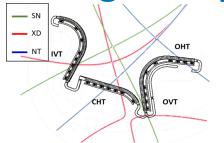
8.73

		IVT	OVT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD6_SN_1001	7	3,5	4	1,5	0,58	0,34
BD6_SN_1002	7	5	4	1,5	0,89	0,49
DDC CN 4003	7	7	2.5	1.5	4.22	0.67
BD6_SN_1004	7	14	40,7	47,9	9,1	9,9
RDP 2M IOO2	/	25	114./	85.2	25.3	10.8

		IVI		CHI			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)		q_perp_sp2 (MW/m^2)
BD11_XD_1001	7	3.5	1.5	1.6	0.69		0.38
BD11_XD_1003	7	7	35	25.8	2.1		0.4
BD11_XD_1004	7	14	138	121	7.34		1.1
BD11_XD_1005	7	25	230	229	16.4		2.45
BD11_XD_1006	7	35	298	313	25.9		3.95
BD11_XD_1007	7	45	434	448		,	

NEGATIVE TRIANGULARITY								
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)				
BD15_NT_1003	6	7	29	68				
BD15_NT_1004	6	14	112	133				
BD15_NT_1005	6	25	193	207				
BD15_NT_1006	6	35	205	236				

	SINGLE NULL					
	IVT shaping at 2.3°					
q	$q_{per} = 9.1 MW/m^2$					
q	$m_{mb} = 16.4 MW/m^2$					
<u></u>	OVT shaping at 2.2°					
	$q_{per} = 9.9 MW/m^2$					
q	$_{mb}=16.8MW/m^2$					
TEMPERATURE	1259.1 Max 1128,5 197,89 867,28 736,67 606,06 475,45 344,83 214,22 83,612 Min 1303.1 Max 1167,7 1032,4 897,06 761,73 626,39 491,06 955,73 220,39 85,058 Min					
	n _{tc} at 5MPa. 60 C°. 11m/s					


OHT

P_perp_sp2

(MW/m^2)

1.97

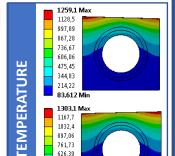
4.48

Scenarios as Power increases in the SOL (net of impurity radiation)

		IVT	OVT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD6_SN_1001	7	3,5	4	1,5	0,58	0,34
BD6_SN_1002	7	5	4	1,5	0,89	0,49
DDC CN 4002	7	7	2.5	1.5	1.22	0.67
BD6_SN_1004	7	14	40,7	47,9	9,1	9,9
RDP_SM_1002	/	25	114,/	85,2	25,3	16,8
		X-DIVERTOR			IVT	CHT
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD11_XD_1001	7	3.5	1.5	1.6	0.69	0.38
BD11 XD 1004	7	14	138	121	7.34	1.1
BD11_XD_1003	7	35	298	313	25.9	3.95
BD11_XD_1007	7	45	434	448		
	NEGAT	IVE TRIANGULA	RITY		CHT	OHT
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	P_perp_sp2 (MW/m^2)
BD15_NT_1004	6	14	112	133	9.34	4.48
BD15_NT_1005 BD15_NT_1006	6	35	205	236	13.68	27.3
					$\overline{}$	

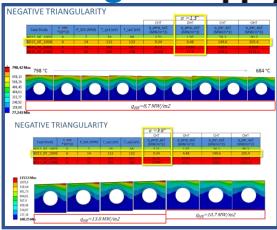
SINGLE NULL

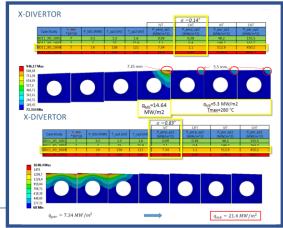
IVT shaping at 2.3°

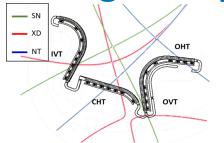

$$q_{per} = 9.1 \, MW/m^2$$

 $q_{mb} = 16.4 \, MW/m^2$

OVT shaping at 2.2°


 $q_{per} = 9.9 \; MW/m^2$


 $q_{mb}=16.8\,MW/m^2$



at 5MPa. 60 C°. 11m/s

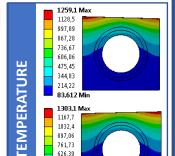
491,06 355,73 220,39

Scenarios as Power increases in the SOL (net of impurity radiation)

		IVT	OVT			
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD6_SN_1001	7	3,5	4	1,5	0,58	0,34
BD6_SN_1002	7	5	4	1,5	0,89	0,49
DDC CN 4002	7	7	2.5	1.5	1.22	0.67
BD6_SN_1004	7	14	40,7	47,9	9,1	9,9
RDP_SM_1002	/	25	114,/	85,2	25,3	16,8
		X-DIVERTOR			IVT	CHT
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	q_perp_sp2 (MW/m^2)
BD11_XD_1001	7	3.5	1.5	1.6	0.69	0.38
BD11 XD 1004	7	14	138	121	7.34	1.1
BD11_XD_1003	7	35	298	313	25.9	3.95
BD11_XD_1007	7	45	434	448		
	NEGAT	IVE TRIANGULA	RITY		CHT	OHT
Case Study	n_sep *10^19	P_SOL (MW)	T_sp1 (eV)	T_sp2 (eV)	q_perp_sp1 (MW/m^2)	P_perp_sp2 (MW/m^2)
BD15_NT_1004	6	14	112	133	9.34	4.48
BD15_NT_1005 BD15_NT_1006	6	35	205	236	13.68	27.3
					$\overline{}$	

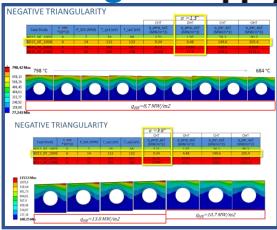
SINGLE NULL

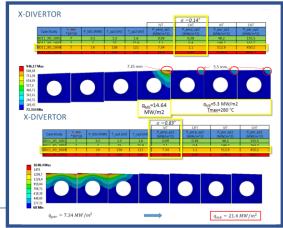
IVT shaping at 2.3°


$$q_{per} = 9.1 \, MW/m^2$$

 $q_{mb} = 16.4 \, MW/m^2$

OVT shaping at 2.2°


 $q_{per} = 9.9 \; MW/m^2$


 $q_{mb}=16.8\,MW/m^2$

at 5MPa. 60 C°. 11m/s

491,06 355,73 220,39

 For the 3 reference configurations, a power of 14 MW can be handled without damaging the monoblock (T below recrystallization at the

center).

• The plasma temperatures at this power even in the pure deuterium case (shown in the table) are at the limit for admissible sputtering of W.

The <u>maximum power</u> that can be <u>manage by the divertor</u> seems <u>not limit</u> <u>the experimentation</u> of physics scenarios.