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@) Outline
* Aretrospect of JET campaigns in view of fuel inventory
e Overview of fuel retention measurements in JET-ILW
* Assessment of fuel retention for different isotopes
e Results of tritium clean-up campaigns

e Summary and conclusions
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A retrospect of JET campaigns in view of fuel inventory
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@) Overview of fuel retention measurements in JET

=
Post-mortem Global Local in-situ
material analysis gas balance measurements
=  Entire campaign or longer = Multiple discharges = |ased-based methods
= After long-term outgassing = After short-term outgassing = Retention monitoring
= Long-term retention (~1 year) = Medium-term retention (hours) = Short-/long-term retention

Long waiting times LID-QMS & LIBS

injected

“Permanent” Upper limit on the fuel Local retention
in-vessel inventory remaining in the vessel (can be depth-resolved)
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retention rate [D/s]

) Lessons learned from earlier studies: reference for D retention

In JET-ILW retention is strongly reduced compared to carbon.
Co-deposition is still responsible for 2/3 of long-term retention,
dominated Be layers on the upper tiles of the inner divertor

S. Brezinsek, Nucl. Fusion 2013
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A. Widdowson, Phys. Scr 2021
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@) Global gas balance

= Composition analysis with gas chromatography

Active Gas Handling System (AGHS)
— large complex facility

- to different

ounting cycle

Multiple repeated plasmas
(with limited gas throughput) ex-vessel pVT

S. Brezinsek, NF 2013
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Composition analysis with sub-divertor RGA

: More accessible alternative
umped in-vessel pVT (requires dedicated calibration)
(cryo-pumps) A. Widdowson, Viorus \ APpumped
PSI 2024 Dpumped = < T ) R
Pumped gas quantification: pvT NF 2025 54
(ideal gas equation of state) Sub-divertor Residual Gas Analysers —
Pressure * Volume oc Temperature kQuadrupoIe Mass Spectrometers (QMS)
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@) Fuel retention of different isotopes

Assessment by in-vessel pVT — accuracy not sufficient for reliable quantification

o N

I
N

Balance, %

Main reasons:

___________________________________________________________

* Low retention — difference of two large
numbers (gas quantities) with uncertainties

e D balance

e T balance

* Scatter in calibration data for effective T,

— not expected from modelling (DIVGAS)
— +1.5% absolute gas balance uncertainty

* T balance affected by contribution of HT
to QMS mass signal 4 (normally D,)
— no accurate quantification possible

____________________________________________

T

plasma

Nevertheless, no indication of significant
differences in retention between D and T,
comparable levels with earlier D studies
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u@_é) Implementation of tritium recovery after DTE2&3 . Wauters,
= Phys. Scr. 2022
Motivation of initial clean-up phase: quick transition to low tritium plasma content (<1%) D. Matveev,
for low neutron rates in subsequent high-power plasma (final goal <0.02% T in exhaust) NF 2023
A. Widdowson, I
Baking » Low temperature D plasma » Low- to high-power D plasg#®™= ~NF 2025 —
/
LID-QMS ﬂ
ﬂ 320 °C | | | | \
200 °C I :
Baking GDC plasma ICWC plasma \
Temperature ramp and hold Glow Discharge Conditioning lon Cyclotron Wall Conditioning |
* Passive outgassing * DCdischarge (~ kW) * RFdischarge (250 kW)
e T=200°C>320°C «  Without B, «  With B,
e Continuous (days) * Continuous (hours) * Pulsed (~10s)
* Main chamber mostly * Main chamber recessed * Main chamber limiters

11 D. Matveev | IAEA FEC 2025 | Chengu, China | 16 October 2025



=

@) Gas balance with in-vessel pVT

* For quantification of tritium recovery in post-DTE2 and post-DTE3 clean-ups
— applied for ICWC during baking, limiter and RISP plasma sessions thereafter

2
5 post—DTE2 clean—up _ post—DTE3
I R
— O: § hd T * | } ®
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© I ZIN N
< _l N\ L ’
32 I % \ i
8_32_ o D balance :: L : ¢ ,'
3 T balance NS NS
(b) : T =7
1 2 3 4 5 6 8 9
ICWC [ICWC ICWC ICWC ICWC RISP ICWC Lim

Calibration uncertainties less critical
as no T injections are involved
— all measured T is recovered T

Role of HT contribution less dramatic

Clear increase of D retention

on the day right after baking

— wall reservoir depleted by cleaning
— still measurable T recovery
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@) Results of post-DTE2 and post-DTE3 T clean-up experiments

=

1.5x10%
- post-DTE2 (252 g T injected)
- post-DTE3 (108 g T injected)
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T atoms
Ul =
() (@)
X X
= =
2

0.0 . .
240°C bake 320°C bake ICWC GDC Total
JET-C | JET-ILW . post-DTE2 total: 1.3x10%%atomsT=0.65gT
14, PTE DTEL TIE n o2 12 ores | Consistent results:
post-DTE3 total: 5.6x10%2atomsT=0.28g T
mlzo’ 106.7 107.5-
2 Reasons for ~2 times less T removed after DTE3 compared to DTE2:
2 zz e ~2times less initial inventory (no ~100%T campaign before DTE3 )
§ i * shorter total baking duration (but higher average temperature)
= 40- .
T o * less number of ICWC pulses, no GDC
O.QOS 0.42
0 PTE DTE1 TTE T1 DTE2 T2 DTE3 . . . .
Cleaning effectiveness assuming 2% retention: ~13%
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@) Laser-based local in-situ measurements: LID-QMS

Laser-Induced Desorption (LID) — detection by Quadrupole Mass Spectrometer (QMS)
Commissioned in 2023 prior to DTE3 for divertor areas with major co-deposition
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14 D. Matveev | IAEA FEC 2025 | Chengu, China | 16 October 2025



O m

=

15

D. Matveev | IAEA FEC 2025 | Chengu, China | 16 October 2025

onitoring of tritium clean-up with LID-QMS

AL LLL

1.% 10%°
B=
O 1.x 10"
wy
£ ..
S re-deposition
© >
o
®1.x10'8
% o D release
o
& T release
1.x 10" : : : : : :
W08 \a® X QX A0 p A A
\o,age\ - \Oe‘io(e?\ a&‘e‘?\ 1% Q AN
1.%x 10%°
=
2 1x 1019 /f\\?/’\/.
wy
=
(@]
©
o
© 1.x10'8
% o D release
o
& T release
1.x 10

et ® ‘io(?—?‘\g?xe( R 00 g
)

‘o€ )




)
J

(((

(

) Summary and conclusions

JET DTEs offered unique opportunity to compare fuel retention of different isotopes
 Accuracy of in-vessel gas balance not sufficient for reliable measurements at low retention levels
 No indication of significant differences to previous studies, retention comparable for Dand T

e Stronger short-term T retention can be expected due to fueling and wall dominated by D

*  Post-DTE clean-up experiments guide the development of ITER T recovery strategies T Wauters, PFMC 2025
* Initial T recovery after DTE2 and DTE3 consistent with total tritium inventory in campaigns
* Initial cleaning efficient in terms of reduction of tritium plasma content, especially baking and RISP
« Low T exhaust target achieved by extended clean-up campaigns with high-power pulsing in 6 weeks
* Global T accountancy still ongoing, completion expected in spring 2026

* Applicability of laser-based methods for fuel retention monitoring demonstrated . ziobinski, PFMC 2025
 LID-QMS will be applied for in-situ fuel retention monitoring in ITER, LIBS under consideration
« Demonstrated fuel removal by baking and RISP, though indicating re-deposition in far-SOL

* An extensive body of experimental results has been collected for further evaluation

« Sample retrieval completed, post-mortem analysis will be done and reported in the coming years
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@) Backup: Lessons learned from post-mortem material analysis

=
lon-Beam Analysis (here after ILW2)
0 1 3 4 5 6 V4 8

R 1004 . - Be JET-ILW divertor
R o
s ATl L A
8 0= e e
T 51 o o .+ 1+ D
Q- x n L | . o b I
P | 9% \ i o A A
— ] $ zi L o

0 ] e N o ol ng o

Distance along the divertor tiles (0 - 8), mm

_ . . . . K. Heinola, JNM 2015
In JET-ILW co-deposition is still responsible for 2/3 of retention, & o NI S0

with > 60% in the divertor, concentrated on inner tiles 0 and 1 A. Widdowson, Phys.Scr. 2021
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Top view

Poloidal section

Backup: JET geometry, pumping and neutral gas diagnostics
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@) Backup: Applicability of gas balance with in-vessel pVT

=

* For assessment of fuel retention rates in T and DT plasmas in comparison to D
* For quantification of T recovery in post-DTE2 and post-DTE3 clean-up experiments

Example forp =1 Pa

2D DIVGAS code* (Direct Simulation Monte-Carlo) 2r 2
simulations of neutral gas distribution A nm3 T K
in isolated torus during in-vessel pVT E oy N o
oF 8E+20 ok 300
R 7.5E+20 B 250
. . . . i 1 7E+20 200
Addressing ideal gas law applicability 4tk el 150
. . . . . = | —| 5.5E+20 - 50
in linking gas parameters in sub-divertor =1 B, g
2F - VoY
to volume average data and total gas amount I ~ Be !
i : 3E+20 -
3r e SF
Preliminary results support the applicability A Iigff’ A
- +19 A=
and physical soundness of the method : ;
152 253 35 4 52 253 35 4
* C. Tantos, NF 2022 X [m] X [m]
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Cumulative T removal, x10%? atoms
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Backup: Tritium recovery after DTE2

D. Matveev, NF 2023
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@) Backup: Tritium plasma content during clean-up

=

T content D (T—removal) m%
in plasma . 4_:/ Break in operations (thus outgassing)
inferred % % : ft snd start with higher power pulses
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neutron | : | 7
rates ¥
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@) Backup: Laser-based local in-situ measurements: LIBS

Laser-Induced Breakdown Spectroscopy (LIBS)
— spectroscopical analysis of local laser-induced plasma of ablated material

Measurements on remote handling arm after end of operations and venting (2024)

J. Likonen, PFMC 2025 >800 locations, up to several 100 pulses each
R. Yi, PFMC 2025

Yy B

Multiple spectrometers
including high resolution
Littrow spectrometer

to resolve Ha, Do, Ta
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@) Backup: Local depth-resolved measurements with LIBS
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