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Drift flows redistribute plasma in the island divertor SOL of W7-X

• flows are oriented in the bi-normal direction

• typical velocities of several km/s

• complex pattern of counter-streaming flows across the island

• ExB nature is indicated by electric potential, Te measurements

Drift flow transport is very effective due to the small pitch angle

• long parallel connection lengths to the targets in W7-X (several 100m)

•  bi-normal transport is a factor 10-3 shortcut compared to parallel heat transport

Drift flows alter heat and particle fluxes to the divertors

• flows provide an energy transport channel into “shadowed” regions of the SOL

• lead to asymmetries between upper and lower divertors

Velocity and impact of drift flows decreases for higher plasma densities

Challenge for modeling stellarator divertors!

• state-of-the-art 3D edge transport models (EMC3-EIRENE) do not include drifts

 cannot globally + consistently reproduce W7-X experimental results

• challenge for W7-X future operation scenarios towards higher heating powers

• stellarator reactor development has to rely on predictive modeling

ABSTRACT

CHARACTERISTIC SCALES IN THE ISLAND SOL

modular divertor plates intersect magnetic islands

 stationary island chain at plasma edge

Standard case: 5 islands (𝜄 = 1/𝑞 = 5/5) 

magnetic islands 

closed flux 

surfaces bi-normal 

THE ISLAND DIVERTOR IN W7-X

• performs well!

long pulse operation, 

detachment readily achievable

good impurity retention

• many fundamental features can be 

modeled with EMC3-EIRENE 

However:

• heat and particle fluxes are not 

entirely predictable

• likely cause: no drift flow physics in 

EMC3-EIRENE

Island divertor experience

• parallel: long connection lengths to targets (~ 100m)

• sheath physics, conductive / convective transport

• fully included in EMC3-EIRENE 

• radial: main gradients direction  turbulent transport

• included in EMC3-EIRENE via prescribed diffusivities 

• bi-normal: on flux surfaces, e.g. ErxB drift

• drifts are not included in EMC3-EIRENE

Fundamental edge transport directions

strike line on divertor

[Gao et al. NF 2019]

L‖ ≈ 200m L⊥ ≈ 0.05m
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Target Shadow 

Region (TSR)

• perpendicular: short distance to target, but turbulent particle 

fluxes are rather small in W7-X [Killer NF 96 096038 (2021)]

• bi-normal: 𝐿𝑓𝑠~ 10−3𝐿∥ due to small pitch angle 𝚯

 effective transport channel even for moderate drift flows

bi-normal drift flows point into / out of the TSR
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[Kriete et al NF 63 (2023) 026022] 

• bi-normal flows with velocity ~km/s 

• flow direction changes across the 

radial range of the island

• detailed flow pattern is highly 

sensitive to magnetic island geometry

• flow direction flips with field reversal 

 drift flow

• Te peak in TSR 

• Te minimum at island center

 electric fields can drive  

drift flows

• not reproducible with EMC3-

EIRENE
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• 2D (time-averaged) Vfl

and Te measurement 

from probe array

• 𝐸𝑟 = −𝛻Φ𝑝𝑙𝑎𝑠𝑚𝑎 = −𝛻(𝑉𝑓𝑙 + 2.8𝑇𝑒)

expect bi-normal 
𝐸𝑟×𝐵

𝐵2
flows, v~km/s

[Killer et al.  NF 65 (2025) 056026] 
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𝒒∥ = 𝒒𝒄𝒐𝒏𝒅 + 𝒒𝒄𝒐𝒏𝒗~ 𝟏𝟎𝐌𝐖/𝐦𝟐

𝒒𝑬×𝑩 =
𝟓

𝟐
𝑻𝒆𝒏𝒆𝒗𝑬×𝑩~𝟓𝟎𝟎𝐤𝐖/𝐦𝟐

for typical values of 

Te,Ti=50eV, n=1e19m-3, v=3km/s

projecting ExB flux onto the 

parallel direction

𝒒𝑬×𝑩,𝒆𝒇𝒇 = 𝚯−𝟏𝒒𝑬𝒙𝑩>
𝟏𝟎𝟎𝐌𝐖

𝐦𝟐
≫ 𝐪∥

ExB drift flux

Disclaimer: this is on over-simplification for illustration. 

• assumption of constant potential on island flux surfaces is not verified

• no evidence of enormous drift flow velocities up to the targets

three main flow 

regions in GPI 

field of view

Gas Puff Imaging (GPI)
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OBSERVATION OF DRIFT FLOWS

DIVERTOR ASYMMETRIES FROM 𝑬 × 𝑩 FLOWS

𝑬 × 𝑩 NATURE OF DRIFT FLOWS

[Terry et al., RSI 95 093517 (2024)]

[Flom et al., https://arxiv.org/abs/2312.01240] 
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He beam line ratio spectroscopy

DENSITY DEPENDENCE OF DRIFT FLOWS

electric fields decrease 

for higher plasma density

GPI flow velocities decrease 

for higher plasma density

Reciprocating Langmuir probes

[Hammond et al PPCF 61 (2019) 125001] 

• up-down asymmetry decreases 

for higher plasma densities 

possibly indicating reduced 

role of drift flows

• confirmation of previous 

experiments (“OP1”, with test 

divertor in different magnetic 

configuration)

OP2

OP1

[Killer et al.,NF 65 056026 (2025)]
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