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Island Divertor in W7-X

closed flux surfaces

modular divertor plates intersect magnetic islands

magnetic islands 

• performs well!

 long pulse operation, 

 detachment readily achievable

 good impurity retention

• many fundamental features can 

be modeled with EMC3-EIRENE 

However:

• heat and particle fluxes are not 

entirely predictable

• likely cause: no drift flow 

physics in EMC3-EIRENE

Island divertor experience so far

 stationary island chain at plasma edge

 Standard case: 5 islands (𝜄 = 1/𝑞 = 5/5) 

strike line on divertor

[Gao et al. NF 2019]
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Fundamental transport directions in the island divertor

bi-normal 

• parallel: long connection lengths to divertor targets (some 100m)

• sheath physics, conductive / convective transport, …

• fully included in EMC3-EIRENE 

• radial: main gradients direction 

 turbulent radial transport

• included in EMC3-EIRENE via 

prescribed diffusivities 

• bi-normal: on island flux surfaces, 

e.g. ErxB drift from sheath Er

• drifts are not included in 

EMC3-EIRENE

small pitch angle 

in island 𝚯~𝟏𝟎−𝟑
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Transport directions have different scale lengths

L‖ ≈ 200m L⊥ ≈ 0.05m

LCFS

confined main plasma

Lfs ≈ 0.2m B

Target Shadow 

Region (TSR)

• perpendicular: short distance to target but turbulent particle fluxes are rather small in W7-X [Killer NF 21]

• bi-normal: 𝐿𝑓𝑠~ 10−3𝐿∥  effective transport channel even for moderate drift flows on flux surfaces
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Up-Down asymmetric divertor loads indicate role of drift flows

lower divertor

upper divertor

BB

E

E

vExB
vExB

bi-normal drift flows point into / out of the TSR

(depending on B direction and divertor location)

[Hammond et al PPCF 61 (2019) 125001] 

*low iota configuration - different island 

geometry but same physics process
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Up-Down asymmetric divertor loads indicate role of drift flows

[Hammond et al PPCF 61 (2019) 125001] [Kriete et al NF 63 (2023) 026022] 

• asymmetry decreases for higher plasma densities 

 possibly indicating reduced role of drift flows

• previous studies are restricted to “low-iota” configuration in 

“test divertor” (2017-2018)

 now, investigate the more relevant “Standard” configuration

*low iota configuration - different island 

geometry but same physics process
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• bi-normal flows with velocity of km/s are 

observed in the island SOL

• flow direction changes across the radial 

range of the island

• detailed flow pattern is highly sensitive 

to magnetic island size / position

• flow direction flips with field reversal 

 drift flow

Direct observation of drift flows

flow pattern in island divertor SOL 

observed with Gas Puff Imaging (GPI)

[Terry et al., RSI 95 093517 (2024)]
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• Te maximum at TSR 

boundary

• not consistently 

reproducible with 

EMC3-EIRENE

Non-monotonic Te profiles in island divertor indicate electric 
fields that can drive drift flows

[Flom et al., https://arxiv.org/abs/2312.01240] 
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2D (time-averaged) plasma potential Φ𝑝𝑙𝑎𝑠𝑚𝑎 map from reciprocating probe array

 radial electric field 𝐸𝑟 = −𝛻Φ𝑝𝑙𝑎𝑠𝑚𝑎

 expect bi-normal drift flows from 
𝐸𝑟×𝐵

𝐵2
of order km/s  agreement with GPI

Reciprocating probe array provides electric field map from 2D 
measurement of Te, Vfloat

[Killer et al.  NF 65 (2025) 056026] 
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Convective heat transport by drift flows is significant due to 
the small island pitch angle

typical parallel SOL heat fluxes: 

𝒒∥ = 𝒒𝒄𝒐𝒏𝒅 + 𝒒𝒄𝒐𝒏𝒗~ 𝟏𝟎𝐌𝐖/𝐦𝟐

𝒒𝑬×𝑩 =
𝟓

𝟐
𝑻𝒆𝒏𝒆𝒗𝑬×𝑩~𝟓𝟎𝟎𝐤𝐖/𝐦𝟐

for typical values of 

Te,Ti=50eV, n=1e19m-3, v=3km/s

projecting ExB flux onto the parallel direction

𝒒𝑬×𝑩,𝒆𝒇𝒇 = 𝚯−𝟏𝒒𝑬𝒙𝑩>
𝟏𝟎𝟎𝐌𝐖

𝐦𝟐
≫ 𝐪∥

lower divertor

L‖ ≈ 200m

Lfs ≈ 0.2m

ExB drift flux

Disclaimer: this is an over-simplification for illustration purpose

• assumption of constant potential on island flux surfaces not verified

• no evidence of enormous drift flow velocities up to the targets

?
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Drift flow velocity decreases for higher densities

density dependence of GPI flow 

velocities for three main flow regions

R1

R2

R3
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electric field decrease for higher densities

Effects associated to drift flows get weaker for higher densities

strong up-down asymmetry 

for low densities

small up-down asymmetry 

for high densities
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• bi-normal drift flows with v~km/s redistribute SOL plasma

• highly efficient transport channel due to small island pitch angle

• resulting in heat + particle fluxes to “shadowed” divertor regions 

 disagreement of experimental and modeled divertor heat loads

 asymmetries between upper and lower divertors

• flow velocities and divertor asymmetries decrease for higher 

plasma densities

• the lack of drift flows in state-of-the-art 3D edge transport 

models imposes a challenge

 for future W7-X divertor operation towards higher heating power

 for the development of stellarator reactor divertor scenarios

Summary


