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Mechanism of magnetic island opening in fusion plasmas
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• Magnetic fusion needs good magnetic surfaces

• Unwanted magnetic islands must be prevented

• Mechanism opening islands must be understood

• Leading to our key question on field penetration

KSTAR with RMP

QA config. with higher pressure

islands

islands
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Field penetration is a bifurcation to large magnetic islands
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at just slightly different amplitudes,
leading to a very different consequence

[Hu et al., Nucl. Fusion (2020)]
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• A resonant magnetic perturbation 𝛿𝐵  is 

screened by parallel currents 𝛿 Ԧ𝑗∥ at the rational 

surface when its strength is insufficient

• Its electromagnetic torque 𝛿 Ԧ𝑗∥ × 𝛿𝐵 is balanced 

by viscous torque

• However, 𝛿𝐵 can penetrate to the resonant 

surface when its strength reaches a threshold – 

known as field penetration bifurcation

• Creating large, nonlinear magnetic islands

Locking

Screening



Field penetration is the leading hypothesis for error-field driven 
disruption and RMP ELM suppression

• Disruptive locked modes by intrinsic error 

field (EF) are created by field penetration in 

the core, by low (m,n) resonant field

• RMP ELM suppression is believed to come 

with field penetration in the edge, by mostly 

high (m,n) resonant fields

• These two represent core vs. edge, or

bad vs. good side of non-axisymmetry, but 
share the key process in common – 

Field penetration
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(2,1) island driving 
disruptive locking 

[TM1 by Q. Hu]

(10,3) island 
reducing pedestal 
and stabilizing 
ELMs



Boundary layer theory offers a unique way to gain fundamental 
understanding of complex MHD interplays in field penetration

• Field peneteration is a boundary layer phenomenon 

⎯ Outer layer : Ideal MHD is dominant

⎯ Inner layer : Ideal MHD breaks down and all subsidary physics 

effects can come into a play

• Layer is narrow, with radial scale 𝛿 ∼ 𝑆−1/3 < 10−3 in ITER

• Analytic theory is possible in slab representation, targeting 

physics understanding and verification for full simulation in the 

future
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⎯ ො𝑥 ∝ ∇𝜓

⎯ ො𝑦 ∝ 𝐵 × ∇𝜓

⎯ Ƹ𝑧 ∝ 𝐵

x=0

Resonant surface

x

y

NSTX with EF

As used in theory for islands

since FKR (1963)
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Two-fluid drift-MHD adapted to explore layer response

• Following two-fluid drift MHD formulation and including

⎯ First-order drifts and ion gyro-viscous tensor pressure ∇ ⋅ Π𝑔

⎯ Phenomenological conductivity or (perpendicular diffusivity), electron/ion viscosity

• Drift velocities:
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𝐸 + 𝑉 × 𝐵 = 𝜂Ԧ𝑗 −
1

𝑒𝑛0
∇𝑝 − Ԧ𝑗 × 𝐵 −

𝜏

1 + 𝜏
෠𝑏 ⋅ ∇𝑝 ෠𝑏 − 𝜇𝑒∇2𝑉𝑒

𝑚𝑖𝑛0

𝜕

𝜕𝑡
+ 𝑉 ⋅ ∇ 𝑉 = Ԧ𝑗 × 𝐵 − ∇𝑝 − 𝑚𝑖𝑛0

𝜏

1 + 𝜏
𝑉∗ ⋅ ∇𝑉⊥ + 𝜇𝑖∇2𝑉𝑖 + 𝜇𝑒∇2𝑉𝑒

𝜕

𝜕𝑡
+ 𝑉 ⋅ ∇ 𝑝 = −𝛾𝑝 ∇ ⋅ 𝑉 + 𝜅∇2𝑝

𝑉 = 𝑉𝐸 + 𝑉∥
෠𝑏 = 𝑉𝑖 −

𝜏

1 + 𝜏
𝑉∗  = 𝑉𝑒 −

𝜏

1 + 𝜏
𝑉∗ +

Ԧ𝑗

𝑒𝑛0
𝑉∗ =

෠𝑏 × ∇𝑝

𝑒𝑛0𝐵

[Fitzpatrick et al., Phys. Plasmas (2005)]



4-(Scalar)-field model along with reduced MHD

• Reduced MHD: Take (෠𝑏 ⋅ ∇ ×) to remove compressional Alfven wave

• Force balance indicates 𝒑 = 𝑝0 − 𝐵0𝒃𝒛

• 𝐵 = ∇𝝍 × Ƹ𝑧 + (𝐵0 + 𝒃𝒛) Ƹ𝑧, 𝑉 = ∇𝝓 × Ƹ𝑧 + 𝑽𝒛 Ƹ𝑧 in a slab lead to 4-field (𝝍, 𝒁, 𝝓, 𝑽𝒛) equations
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𝜕𝜓

𝜕𝑡
= 𝜙, 𝜓 − 𝑍, 𝜓 + 𝜂𝐽 −

𝜇𝑒𝑑𝛽 1 + 𝜏

𝑐𝛽
∇2 𝑉𝑧 +

𝑑𝛽

𝑐𝛽
𝐽

𝜕𝑍

𝜕𝑡
= 𝜙, 𝑍 + 𝑑𝛽

2 𝐽, 𝜓 + 𝑐𝛽
2𝜂 + 1 − 𝑐𝛽

2 𝜅 ∇2𝑍 + 𝑑𝛽𝑐𝛽 𝑉𝑧, 𝜓 + 𝜇𝑒𝑑𝛽
2∇2 𝑈 − ∇2𝑍

𝜕𝑈

𝜕𝑡
= 𝜙, 𝑈 −

𝜏

2
∇2 𝜙, 𝑍 + 𝑈, 𝑍 + ∇2𝑍, 𝜙 + 𝐽, 𝜓 + 𝜇𝑖∇2 𝑈 + 𝜏∇2𝑍 − 𝜇𝑒∇2 𝑈 − ∇2𝑍

𝜕𝑉𝑧

𝜕𝑡
= 𝜙, 𝑉𝑧 +

𝑐𝛽

𝑑𝛽
𝑍, 𝜓 + 𝜇𝑖∇2𝑉𝑧 + 𝜇𝑒∇2(𝑉𝑧 +

𝑑𝛽

𝑐𝛽
𝐽)

𝐽 = ∇2𝜓, 𝑈 = ∇2𝜙, 𝑐𝛽 = 𝛽/(1 + 𝛽), 𝑑𝛽 = 𝑐𝛽𝑑𝑖/ 1 + 𝜏 𝑑𝑖 = 𝑚𝑖/𝑛0𝑒2𝜇0/𝑎

* (𝑡, ∇, 𝐵, 𝜂, 𝜇𝑖,𝑒, 𝜅) are properly normalized with a,VA

Ion skin depth

∗ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐵𝑟𝑎𝑘𝑒𝑡 𝐴, 𝐵 ≡ Ƹ𝑧 ⋅ (𝛻𝐴 × 𝛻𝐵)

*𝒁 ≡ 𝒃𝒛/𝑐𝛽 1 + 𝜏



Resonant field response is characterized by 
a single quantity “𝚫𝐢𝐧” in boundary layer theory 

• Boundary layer theory with a small parameter 𝜖 ∼ 𝑆−1/3 shows that resonant layer 

response ෨𝜓, ෨𝑍, ෨𝜙, ෨𝑉𝑧 ∝ 𝑒𝑖 𝑚𝜃−𝑛𝜙  is characterized by a single quantity:

• Asymptotic matching to global outer-layer response (mostly ideal 3D MHD)
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Δ𝑖𝑛(𝜔, 𝑄, 𝑄𝑖, 𝑄𝑒, 𝑐𝛽, 𝐶, 𝐷, 𝑃𝑖, 𝑃𝑒)
* Normalized 𝐸 × 𝑩 rotation 𝑸, ion (electron) diamagnetic rotation 𝑸𝒊(𝒆), beta 𝒄𝜷, 

conductivity (diffusivity) 𝑪, ion gyroradius 𝑫, ion (electron) viscosity 𝑷𝒊(𝒆)

lim
𝑋→∞

Δ𝑖𝑛 →
𝜕

𝜕𝑥
ln 𝜓

−

+

← lim
𝑥→0

Δout =
Δext

𝜓𝑚𝑛
+ Δ′ 𝜓

𝜓𝑚𝑛• Giving growth 𝜔 for tearing modes, or seed island 

size 𝜓𝑚𝑛 driven by external EF or RMP

⎯ As a function of 𝑄, 𝑄𝑖, 𝑄𝑒, 𝑐𝛽, 𝐶, 𝐷, 𝑃𝑖 , 𝑃𝑒

Tearing mode index External drive ∝ 𝛿𝐵𝑚𝑛 
EF or RMP

Tearing

Total

Outer-layer Outer-layer

Inner-layer



Field penetration occurs when torque balance breaks down

• In the presence of external 3D fields (EF or RMP), 

electromagnetic 𝛿 Ԧ𝑗∥ × 𝛿𝐵 torque is induced

• Field penetation: When viscous torque cannot make 

a balance against  𝛿Ԧ𝑗∥ × 𝛿𝐵 torque, 𝜓𝑚𝑛, 𝜏𝜙  

becomes indefinitely large near natural frequency 

𝑸 ∼ 𝑸𝒆, breaking linear framework with nonlinear 

islands

• Field penetration threshold can be estimated when 

this torque balance is no longer possible
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𝜏𝜙 = −
𝑘

2
Im Δ𝑖𝑛 𝜓𝑚𝑛

2 ∝ Im
1

Δ𝑖𝑛

𝛿𝑐 =
𝛿𝐵𝑚𝑛

𝐵𝜙 𝑐𝑟𝑖𝑡

2

≈ max
2𝑃 𝑄0 − 𝑄

𝑆 Im 1/෡Δ *෡Δ = 𝜖Δ𝑖𝑛 



Earlier theory already identified 10 distinct regimes

• Earlier theory explored layer response analytically (Cole) and numerically (Park) by ignoring 

electron viscosity and ion parallel flow
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Fourier transform from ෨𝐹 = ෨𝜓, ෨𝜙, ሚ𝑍, ෨𝑉𝑧  to 
ത𝐹 = ത𝜓, ത𝜙, ҧ𝑍, ത𝑉𝑧  by ത𝐹(𝑝) = 𝑐׬

෨𝐹 𝑋 𝑒𝑖𝑝𝑋𝑑𝑋

HR: Hall-Resistive, SC: Semi-Collisional,        

RI: Resistive-Inertial, VR: Visco-Resistive,      
VI: Visco-Inertial, I: Inertial, (i: First, ii: Second)

[Cole et al., Phys. Plasmas (2006)] [Park, Phys. Plasmas (2022)]
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Earlier theories reveal complexity but still without reproducing 
key observations of field penetration

• Most well-known observation is strong density scaling 

(as well as inverse 𝐵𝜙 scaling and rotation scaling) of 

field penetration threshold 

• In theory, most relevant regimes for operating or 

future tokamaks are Semi-collisional (SCi) or Hall-

Resistive (HRi), but its density scaling is too week

• Nonlinear or toroidal effects? Still, there are missing 

physics in linear regimes
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𝛿𝑐 ∝ 𝑛𝑒
𝛼𝑛𝐵𝜙

𝛼𝐵𝑅0
𝛼𝑅𝜔𝛼𝜔

𝛼𝑛,𝐸𝐹 𝑜𝑟 𝑅𝑀𝑃 = 0.55~1.1

𝛼𝑛,𝑆𝐶𝑖 𝑜𝑟 𝐻𝑅𝑖 = 0.25

EF, n=1

DIII-D RMP, n=2 

[Park, ITPA MDC-19]

[Hu et al., NF (2020)]
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Theory has been successfully extended with electron viscosity

• Earlier methods through a single 2nd ODE extended with electron viscosity

• Identifying two new regimes and reproducing strong density scaling, indicating key 

mechanism may be viscosity rather than (or in addition to) nonlinearity or toroidicity
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𝛿𝑐,𝑆𝐶𝑖𝑃𝑒 ∼ 𝒏𝒆
𝟎.𝟔𝟐𝟓𝐵𝜙

−1.626𝑅0
−0.75

𝛿𝑐,𝐸𝑉 ∼ 𝒏𝒆
𝟎.𝟔𝟗𝐵𝜙

−0.75𝑅0
0.125

[Y. Lee et al., Phys. Plasmas (2025)]

[J. Waybright and J.-K. Park, Phys. Plasmas (2024)]



Small electron viscosity can change resonant response strongly 
through delicate balance in generalized Ohm’s law 

• Electron viscosity can change 

response strongly even with classical 

assumption 𝑃𝑒 = 𝑃𝑖 𝑚𝑒/𝑚𝑖

• It is because electron dynamics is in 

delicate balance, as represented by 

generalized Ohm’s law

⎯ Electron viscosity should be compared 

with resistivity, flow, Hall term, in Ohm’s 

law, rather than ion viscosity

• Can play even more important role 

when electron viscosity is anomalous 
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New analytic prediction has also been numerically verified

• 2nd order linear ODE with exponential solution behavior → 1st order nonlinear ODE 

with algebraic solution behavior by Riccati 𝑊 = (𝑝/𝑌)(𝑑𝑌/𝑑𝑝)
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• As implemented in SLAYER 

code and used for verification

• Each asymptotic regimes are 

precisely reproduced by 

SLAYER computation

[J. Waybright et al., Phys. Plasmas (2024)] [Y.S. Lee et al., Phys. Plasmas (2025)]

Rotation Viscosity



Ion parallel flow effects require full numerical integration

• Last piece is ion parallel flow perturbation – requiring full integration in either

• A full solver for these high-order ODE system has also been successfully developed

⎯ In configuration space first by Y. S. Lee

⎯ Recently in Fourier space by R. Fitzpatrick’s group
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In configuration space In Fourier space

[Y. Lee et al., Nucl. Fusion (2024)]

or

[Private communication]



Fully reconstructed solution via Riccati matrix transformation 
clearly illustrates boundary phenomena across layer

• Solution steepness in 𝑋 ∈ (0, ∞) has been controlled by Riccati matrix 

transformation

• This enables the full solution reconstruction in configuration space, 

elucidating boundary layer phenomena
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𝝍 𝝓𝒁 𝑽𝒛

[Y. Lee et al., Nucl. Fusion (2024)]



Ion parallal flow can shield field penetration strongly in high 𝜷 

• Linear regime in low 𝑄 has Δ𝑖𝑛 ∝ (𝑄 − 𝑄𝑒), resulting 𝜏𝜙 ∝ Im 1/Δ𝑖𝑛 → ∞ 𝑎𝑠 𝑄 → 𝑄𝑒

• Singularity point is called natural frequency 𝑄𝑛𝑎𝑡 = 𝑄𝑒, leading to the concept of field 

penetration to nonlinearly growing islands

• Turns out that ion parallel flow removes singularity by strong screening, especially in 

high-𝛽 reactor conditions
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Stronger ion flow shielding

in higher 𝜷, and smaller ion 

gyroradius



New analytic theory with multiple-layer breakdown verifies ion 
parallel flow screening and natural frequency shift

• Extended asymptotic matching with multiple layers has been developed

• For example, in HRi regime: 
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High-order correction by ion parallel flow

• Incredible agreement verifies strong ion 

flow screening

• Also verifying surprising implication – 
There may be no field penetration at all 

in high-𝛃 reactor conditions - to be 

validated in experiments 

[On the courtesy of J. Waybright (PU)]



Overview

• Introduction to field penetration

⎯ As a key process in error field, tearing mode, 3D-edge control

• Modeling background

⎯ Two-fluid drift MHD framework

• New theory and modeling with extended MHD physics

⎯ Strong density correlation with electron viscosity

⎯ Shielding by ion parallel flow near natural frequency

• Implication to parameteric scaling and prediction

• Conclusion remarks

Drift MHD for field penetration - J.-K. Park 23



Extended MHD elevates overall density and 𝑩𝝓 scaling 

• Layer conditions can be under transition regimes 

and regimes are not always clearly separable in 

reality

• Full SLAYER computation for parametric scaling in 

wide experimental conditions

⎯ 3 × 1018𝑚−3 < 𝑛𝑒 < 8 × 1019𝑚−3, 0.3T < B𝜙 < 8T, 

− 200krad/s < 𝜔𝜙 < 500krad/s

⎯ Separating rotation and viscosity (=constant) as an 

independent variable

• Scaling becomes favorable to experiments, 

although inter-parameter relation must be carefully 

accounted 
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𝛿𝑐 ∼ 𝑛𝑒
0.82𝐵𝜙

−1.07𝜔⊥,𝑒
0.79 𝝎⊥,𝒆 = 𝝎𝑬 + 𝝎𝒆

∗ ≅ 𝟎



Applications to ITPA EF threshold database show feasibility

• A set of EF locked mode threshold data 

having TS diagnostics in Ohmically 

heated plasmas is tested with SLAYER 

⎯ In order to minimize uncertainties in 

externally driven torque

⎯ With assumption of viscosity 𝑃 = 3.0, 
𝜔𝐸 = 0, 𝑛𝑖 = 𝑛𝑒, 𝑇𝑖 = 𝑇𝑒

• Initial testing shows a possibility of good 

field penetration threshold prediction

• SLAYER with electron viscosity and ion 

parallel flow will also be tested for data 

with profiles and transport coefficients
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Concluding remarks

• Two-fluid drift-MHD analytic theory extended with electron viscosity and parallel ion 

flow offers new insights for field penetration to magnetic islands

• Key findings:

⎯ Electron viscosity can enhance positive density correlation for field penetration 

threshold, better aligned with empirical scaling

⎯ Parallel ion flow perturbation becomes more important in high-β reactor conditions

and can substantially shield resonant field along with shifted natural frequency

• These new findings are verified numerically, which is being tested against empirical 
scaling and EF database for validation

• Future work will also include the effects of NTV effects, directly incorporating 

anisotropic tensor, as its effects can be important in low-collisionality conditions
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