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Mechanism of magnetic island opening in fusion plasmas

150 1

Magnetic fusion needs good magnetic surfaces

100 A

Unwanted magnetic islands must be prevented

Mechanism opening islands must be understood

50 1

Leading to our key question on field penetration
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Overview

* Introduction to field penetration
— As a key process in error field, tearing mode, 3D-edge control

Modeling background
— Two-fluid drift MHD framework

New theory and modeling with extended MHD physics
— Strong density correlation with electron viscosity
— Shielding by ion parallel flow near natural frequency

Implication to parameteric scaling and prediction

Conclusion remarks
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Overview

* Introduction to field penetration
— As a key process in error field, tearing mode, 3D-edge control

Drift MHD for field penetration - J.-K. Park 4



Field penetration is a bifurcation to large magnetic islands
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[Hu et al., Nucl. Fusion (2020)]

Local resonant (m=2,n=1) field

AN

at just slightly different amplitudes,
2/1 EF amplitude leading to a very different consequence
! ! ! | ! ! ! ! |

- Screening

o Penetfation

I : 1 1 1 I 1 1 1 1 _I_H

A resonant magnetic perturbation 5B is
screened by parallel currents §j at the rational

island width ‘ surface when its strength is insufficient

Nonlinear islands;

Its electromagnetic torque 6j X 8B is balanced

Screening

—
? by viscous torque

Rotation @ q=2—§

However, §B can penetrate to the resonant

Locking surface when its strength reaches a threshold —
Lot R known as field penetration bifurcation
0 0.1 0.2 0.3
Time (s) « Creating large, nonlinear magnetic islands
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Field penetration is the leading hypothesis for error-field driven

dlsruptlon and RMP ELM suppression

 Disruptive locked modes by intrinsic error

(10,3) islan _ _ _ _
= sl reducing pedestal  field (EF) are created by field penetration in
- C e
ol andstabilizing  the core, by low (m,n) resonant field

3 ELMs E

1of (2,1) island driving :
dlsruptlve locking « RMP ELM suppression is believed to come
with field penetration in the edge, by mostly

high (m,n) resonant fields

1.5

o0l

* These two represent core vs. edge, or
bad vs. good side of non-axisymmetry, but
share the key process in common —

Field penetration

0.5

0 1
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Boundary layer theory offers a unique way to gain fundamental

understanding of complex MHD interplays in field penetration

3 o I g LT O, L LI ° i i i
NSTX with EF Field peneteration is a boundary layer phenomenon
e . — OQuter layer : Ideal MHD is dominant
o — Inner layer : Ideal MHD breaks down and all subsidary physics
effects can come into a play
05+ . . . .
| Layer is narrow, with radial scale § ~ S™1/3 < 1073 in ITER
E ool i Analytic theory is possible in slab representation, targeting
N physics understanding and verification for full simulation in the
ol future x=0 ,
——5“}«— Y - 5C\ X Vl/)
.00 oy I — § B XV
’ i f f r'" X -
> l ‘ ¥ ‘:“.‘u X _ Z/\ e B
faadana - Badr~—maa=- / "" As used in theory for islands
R [m] Resonant surface since FKR (1963)
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Overview

* Modeling background
— Two-fluid drift MHD framework
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Two-fluid drift-MHD adapted to explore layer response

 Following two-fluid drift MHD formulation and including [Fitzpatrick et al., Phys. Plasmas (2005)]
— First-order drifts and ion gyro-viscous tensor pressure (V -ﬁg)
— Phenomenological conductivity or (perpendicular diffusivity), electron/ion viscosity

- = - — — T - —_—> - -
min0<—+V-V)V=f><B—Vp—ml-n01—+TV*-VVl+uiV2Vi+ueV2Ve
E+VxB=nj——(Vp—jxB

XB=n ——— —JXB—

W= o \VP )

T
1+7

(5 p)b — vV,

Jd - - - -
<—+V'V>p=—yp(V-V)+KV2p

l

1

*

. vy — — ~ — T — - T = j B X Vp
. V=V + Vb=V, - Vo |=Ve— Vi +
Drift velocities etV T 141 ( ¢ 1+7 en0> enyB
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4-(Scalar)-field model along with reduced MHD

« Reduced MHD: Take (b .V X) to remove compressional Alfven wave

* Force balance indicates p = py — Byb,
- B= Vzp X2+ (Byg+ b,)Z, V= ?gb X 2+ V,Z2in aslab lead to 4-field (v, Z, ¢,V ,) equations
pedg(1+71) _, dg *Z=b,/cgN1+1
p Vel Vg +c_]

B

= [¢, 2] + d3[], 9] + (cn + (1 — c§)x)V2Z + dpeglVy, Y] + pedfV?(U — V22)

0
Y gyl 2] ) -
B_Z
ot
aUu
= = [, U] — % (V2[¢, Z] + [U, Z] + [V2Z, D) + U, ¢] + u; V(U + 1V22) — pV2(U — V?2)
av, c d
=2 = 9 V1 + L 2] + VY, + p V2V, +— )

B Cp
] = Vzll),U — V2¢’ cg = /[3/(1 + ﬁ), dﬁ = C/j’di/V1 + t  lon skin depth di =4/ mi/noezuo/a

« Poisson Braket [A,Bl = 2 - (VAX VB) *(t,V,B,n, Wi k) are properly normalized with a,V
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Resonant field response is characterized by

a single quantity “A;,” in boundary layer theory

« Boundary layer theory with a small parameter € ~ S~1/3 shows that resonant layer
response (1, Z, ¢, V,) «x e!M8—P) is characterized by a single quantity:

_ . _ * Normalized E x B rotation Q, ion (electron) diamagnetic rotation Q; ), beta cg,
Am(w’ Q’ Ql’ Qe ’ Cﬁ ,C,D, P 2 F e ) conductivity (diffusivity) C, ion gyroradius D, ion (electron) viscosity P;,
« Asymptotic matching to global outer-layer response (mostly ideal 3D MHD)

. a ¥ . Aext /
}1_{210 Ay — alnlp ) — }Cl_rg Aout . + A\j

External drive < 6 B, Tearing mode index

(2

Total

» Giving growth w for tearing modes, or seed island
size ,,,,, driven by external EF or RMP
— As a function of @, Q;, Qe, ¢g, C, D, P;, Py

Outer-layer Outer-layer

Inner-layer
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Field penetration occurs when torque balance breaks down

* In the presence of external 3D fields (EF or RMP),
electromagnetic &7j x 8B torque is induced

(&)

* Field penetation: When viscous torque cannot make
a balance against §j; x 6B torque, (Ymn, 75)
becomes indefinitely large near natural frequency
Q ~ Q., breaking linear framework with nonlinear
islands

k
Tp = __Im(Ain)llpmnlz o Im

2

* Field penetration threshold can be estimated when
this torque balance is no longer possible

5. = [5anr XIZP(QO N Q)
| By S1m(1/A)

*A = €A,
crit in

5.

—10-

/]\Indefinitely large torque

Natural frequency

EM torque by
an EFx3
{ no balance ™ EM
" N orque
= EF threshol'd for_ by an EFx2
field penetration
I
: EM torque
I by an EF
l ~,
i |
Qo™ /e
| Q by EFx2 ‘isﬁ?gs f’g’)u ©
in balance 0
Q by EF
in balance
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Earlier theory already identified 10 distinct regimes

» Earlier theory explored layer response analytically (Cole) and numerically (Park) by ignoring
electron viscosity and ion parallel flow  [Cole et al., Phys. Plasmas (2006)] [Park, Phys. Plasmas (2022)]

Fourier transform from ' = (1, ¢, Z,7,) to B Anahic -
— —  — — — ~ . 2 | H
=W, $,Z, V) by Fp) = [ F(X) ePXdX . Y w N
- = = 1.0
. ~ d¢—-2Z - Df .~ = 3 o 10° v
Q- =22 g pir Dy g "
4 213 “ . = 107 R
i(Q—Qi)p'd = (p_;ﬁ) — Pp*(¢+12) - Pepél’@ — ). . Rli E
d2( w) Y 10 l (b) Nurlnerical 0.5 ':
0z -0 - -0 T80 a7+ B by 2), | ] » I
D
. o’
dZ D 4 ‘%‘ "
-@Q—Vz--#-%QedJ-----GP-%Pe}P-Vz'F-P-e«g-P-#—-- S o 1
= < N 0.0
102 >
HR: Hall-Resistive, SC: Semi-Collisional, ;
RI: Resistive-Inertial, VR: Visco-Resistive, 1074 T ; .
VI: Visco-Inertial, I: Inertial, (i: First, ii: Second) 10 10 % 10 10
Rotation
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Earlier theories reveal complexity but still without reproducing

key observations of field penetration

dB,, threshold vs. densnty

“n p9B pAR Aw g 100.0 ¢
5COCne B¢ RO w e F o, =1.1+0.07
* Most well-known observation is strong density scaling g 0% O & EF n=1

(as well as inverse B, scaling and rotation scaling) of & & [Park, ITPAMDC 19]

. . ¢ g g n\:& 10: H‘.’"__—‘q NSTX 4

field penetration threshold . i KSTAR
£ 0 o9 Conoo | |
s o I MALJET
= 1 10

n,eF or Rmp = 0.55~1.1

Line-average n, [10"°m™]

* In theory, most relevant regimes for operating or
future tokamaks are Semi-collisional (SCi) or Hall-
Resistive (HRi), but its density scaling is too week

W g4 (krad/s)
-4
Bmh/Bt (x10™)

Xn,SCi or HRi = 0.25

* Nonlinear or toroidal effects? Still, there are missing
physics in linear regimes

19 _.-3

S 10" m
-
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Overview

* New theory and modeling with extended MHD physics
— Strong density correlation with electron viscosity
— Shielding by ion parallel flow near natural frequency
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Theory has been successfully extended with electron viscosity

- Earlier methods through a single 2" ODE extended with electron viscosity

d [ P’ d_Y] _PCEY =0 [J. Waybright and J.-K. Park, Phys. Plasmas (2024)]
dpl D*(t +1)P, d o
p (H?— )Pe 4 +PriQ-go P - [Y. Lee et al., Phys. Plasmas (2025)]
6 3 From the curl):)! Ohm’s law
N i (iP-D*(@ ~ Q) +Pd )p* +ild + P)(@ - Q" ~ Q(Q - Q)
p) = .

PD(7+1)pt + (i(@ — Q)2 + 63 )p* +i(Q - Q)

« |dentifying two new regimes and reproducing strong density scaling, indicating key
mechanism may be viscosity rather than (or in addition to) nonlinearity or toroidicity

3U(1/4)i"4ncy*(Q — Qe)(Q — Qi)*/*

.62 SB—1.626R—0.75
8T(7/4)D%(r + 1)PL/* ¢ 0

S 0
> 5C,SCiPe ~ Ne

Ageipe =

; 5/4.
. 3inT(5/8)cy " (Q — Qe) . 5 ~ 1069 =075 p0.125
83/4T (11/8)D5/4(T + 1)5/8Pel/4 —> OcEv e ¢ 0
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Small electron viscosity can change resonant response strongly

through delicate balance in generalized Ohm’s law

Cp=0.1,D=5P.=P/o,a=60 (=2
B atlZcg
10° &#ie,D SR
. Q
acg SC]P& \7\ .
= (i \\\ VRip,
(,) /
o) ‘ : DQ?
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- y/ SClE, \RIiP
Q4 Q3/2 CYC%Q I e
&c?_i m D4 // u(’gD"
D3 —
i 10-5 . R (:5(? \_\ HRllpe
e | Z SCii
373 Q-*/"l
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VR 2
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10°® 1074 1072 10° 102
@ Rotation
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 Electron viscosity can change
response strongly even with classical

assumption P, = P;\/m,/m;

* It is because electron dynamics is in
delicate balance, as represented by
generalized Ohm'’s law

— Electron viscosity should be compared
with resistivity, flow, Hall term, in Ohm’s
law, rather than ion viscosity

« Can play even more important role
when electron viscosity is anomalous
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New analytic prediction has also been numerically verified

« 2"d order linear ODE with exponential solution behavior — 1t order nonlinear ODE
with algebraic solution behavior by Riccati W = (p/Y)(dY /dp)

4D2p?’(‘r-+—1)Pe
daw T B 4 1| _ w2 (DT )P
dp D2pi(r+ )P, ; ~ o | 5 e p:
p — +i(Q@—Qe) +p> P & B

+i(Q — Qe) +p2>

[J. Waybright et al., Phys. Plasmas (2024)] [Y.S. Lee et al., Phys. Plasmas (2025)]
° AS imp|emented in SLAYER (a) Transition to SCiPe (b) Transition to EV

10" ooy

code and used for verification P —vei
M B ,155 i " 107? jE\L/MER
« Each asymptotic regimes are 2 - 00}
precisely reproduced by =T
SLAYER computation -t 10
10.?0; 1(;_2 1(;_1 1[‘)0 1[‘)1 e 2021_61:00;011‘02 1-:)31.:)4:]‘05105
“ Rotation P Viscosity
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lon parallel flow effects require full numerical integration

 Last piece is ion parallel flow perturbation — requiring full integration in either

In confiquration space or In Fourier space
. . 5 A 2V, D? d% 5
iQ-Qu) =iX(9=2) + 7 ~ L+ 7P (dX2 u gﬁ) ’ (@ - Qu)p = 2= % d-2) _ 2y —p“Pe]c)—z(l +7)9,
B
B B s w 277N d27 5 d4<f~> dtz i(Q—Qi)pQ(l;: d(png) _p 4(§5+TZ) —Pep4(<5— Z)
ZQZ - 2Q8¢+1D dX2 ‘HZ\CL-;XV’H‘ (Cﬁ + (1 )K) w +P.D (W - W) ; dp o B —.\\
S==7 2 b PN S s T d=(p~) 2 2 2 dVz 2 4
P¢ b (dS 2 &3 dZ Q7 ~iQud = DB — 2 { A ¥ PO (3~ 2),
i(Q - Qs )dX2 iX dX?2 £y 3 (dX“ +de4> + Pe <d_X4 - d_X4> ’ (e m—————— y -Z----f-----------‘nr.;-----\
e mmm———— e ===y L iQV, +iQe) = — — (P + P.)p*V, + P.=-p*p. |
i LV D?>d% 1 H dp 2 i
| OV =i+ XD+ (P+PIgi + Pz i | ST S

» Afull solver for these high-order ODE system has also been successfully developed
— In configuration space first by Y. S. Lee [Y. Lee et al., Nucl. Fusion (2024)]

— Recently in Fourier space by R. Fitzpatrick’s group  [Private communication]

Drift MHD for field penetration - J.-K. Park
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Fully reconstructed solution via Riccati matrix transformation

clearly illustrates boundary phenomena across layer

» Solution steepness in X € (0, ) has been controlled by Riccati matrix
transformation [v. Lee et al., Nucl. Fusion (2024)]

» This enables the full solution reconstruction in configuration space,
elucidating boundary layer phenomena

(b) F¥o
05} | AN,
I | .-"f ‘ ‘\
| _____,_..—-""-' \| =
0.0 ’/ —
T B |
1 o5|==3% 1" -'F'f
R IO R
-10 = - 1 = - 1 [ 23( ) Li A 1 A 1 \ H 1 I
-10 0 10 -10 0 10 -10 0 10 -10 0
0 9 9 10
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lon parallal flow can shield field penetration strongly in high

* Linear regime in low Q has A;, « (Q — Q.), resulting 74 « Im (1/4;,) > 0 as Q@ — Q.

 Singularity point is called natural frequency Q,,,; = Q., leading to the concept of field
penetration to nonlinearly growing islands

« Turns out that ion parallel flow removes singularity by strong screening, especially in
high-£ reactor conditions

(a) V, effects on torque by full SLAYER Bie w/ ion screening Qnat
0.9 T '
: §, —w/loV, (c,->0) 0.18 1 0.15
& | ¢,=0.05

0.16 1

0.14

0.12
& 0.121

0.10 1

0.09
0.08 -

0.06

Magnetic braking force

0.04 0.06
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New analytic theory with multiple-layer breakdown verifies ion

parallel flow screening and natural frequency shift

« Extended asymptotic matching with multiple layers has been developed

. For example, in HRi regime: High-order correction by ion parallel flow
N
Ve N\
N VAR T SN et Q G \*"
Anrivs = im(Q Qe)(zr(m) ((1 o3 T)D2) @5 TeR TP oo \TrnDee
(b) Comparison for natural frequency Q. [On the courtesy of J. Waybright (PU)]

0.09 1

* Incredible agreement verifies strong ion
flow screening

0.08

0.07 A

 Also verifying surprising implication —
There may be no field penetration at all
— SLAYER in high-p reactor conditions - to be
THEORY . . .

validated in experiments

0.06 1

Qnat

0.04 A

0.03 1

0 5 10 15 20 25 30 35 40

PP
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Overview

 Implication to parameteric scaling and prediction
« Conclusion remarks
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Extended MHD elevates overall density and B, scaling

« Layer conditions can be under transition regimes
and regimes are not always clearly separable in

reality . E
E =
» Full SLAYER computation for parametric scaling in = 6 2
wide experimental conditions 4
- 3x10"%m™ <n, <8x10""m™3,0.3T < By < 8T, 2
— 200krad/s < wg < 500krad/s
— Separating rotation and viscosity (=constant) as an 0
independent variable
+ Scaling becomes favorable to experiments, - 20
although inter-parameter relation must be carefully g %
accounted 5 02

0.82 p—1.07, .0.79

Drift MHD for field penetration - J.-K. Park 24




Applications to ITPA EF threshold database show feasibility

- Aset of EF locked mode threshold data Scaling Comparison
having TS diagnostics in Ohmically m NSTX
heated plasmas is tested with SLAYER = DIl-D

N o 101{ = CMOD L
— In order to minimize uncertainties in X -
externally driven torque

— With assumption of viscosity P = 3.0,
wg =0,n; =n,,T; =T,

- Initial testing shows a possibility of good 0 -

field penetration threshold prediction

Theoretical 6B/Bto [Gauss/Tesla]
O

* SLAYER with electron viscosity and ion
parallel flow will also be tested for data

with profiles and transport coefficients 107 o 10° 101
Experimental 6B/Bro [Gauss/Tesla]
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Concluding remarks

» Two-fluid drift-MHD analytic theory extended with electron viscosity and parallel ion
flow offers new insights for field penetration to magnetic islands
» Key findings:
— Electron viscosity can enhance positive density correlation for field penetration
threshold, better aligned with empirical scaling
— Parallel ion flow perturbation becomes more important in high-3 reactor conditions
and can substantially shield resonant field along with shifted natural frequency

» These new findings are verified numerically, which is being tested against empirical
scaling and EF database for validation

» Future work will also include the effects of NTV effects, directly incorporating
anisotropic tensor, as its effects can be important in low-collisionality conditions
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