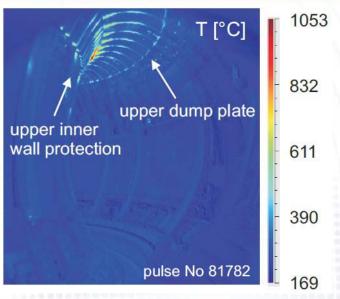
30th IAEA Fusion Energy Conference (IAEA FEC 2025) Chengdu, China, 13-18 Oct. 2025

Thermal Quench Dynamics and Heat Flux Distribution during Massive-Impurity-Injection Triggered Disruption in EAST

L. Zeng, W. Xia, D. Hu, Y. Sun, T. Tang, X. Zhu, S. Zhao, T. Shi, D. Chen, Y. Duan, L. Xu, G. Li, G. Zuo, J. Hu, X. Gao, Z. Gao, the JOREK Team*

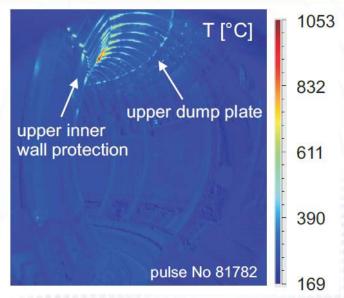
Department of Engineering Physics, Tsinghua University
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China
University of Science and Technology of China, Hefei, China
School of Physics, Beihang University, Beijing, China
Advanced Energy Research Center, Shenzhen University, Shenzhen, China
*See Hoelzl et al 2024 (https://doi.org/10.1088/1741-4326/ad5a21) for the JOREK Team

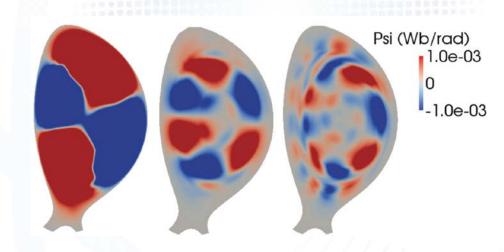


Thermal quench poses serious threat to PFCs

- Thermal quench (TQ) process can cause unacceptable heat load on PFCs in ITER.
 - The stored thermal energy at TQ
 - The duration of TQ and deposition area on PFCs

Massive impurity injection could decrease the PFC energy deposition

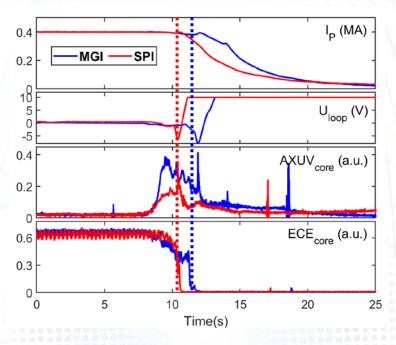

Thermal quench poses serious threat to PFCs



- Thermal quench (TQ) process can cause unacceptable heat load on PFCs in ITER.
 - The stored thermal energy at TQ
 - The duration of TQ and deposition area on PFCs

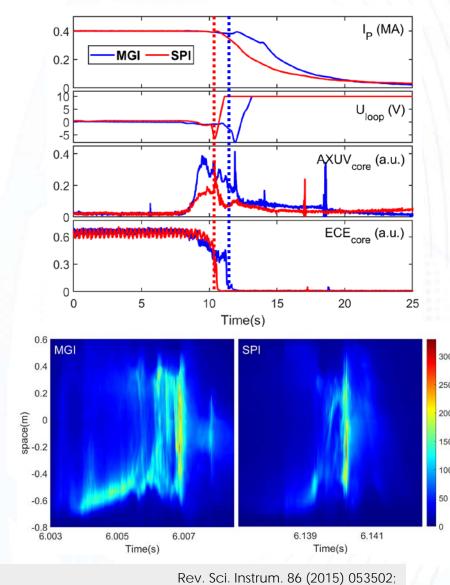
Massive impurity injection could decrease the PFC energy deposition

- Talk presents results for:
 - Impurity transport during massive-impurityinjection triggered disruptions
 - TQ process on EAST and its interpretive MHD modelling with JOREK



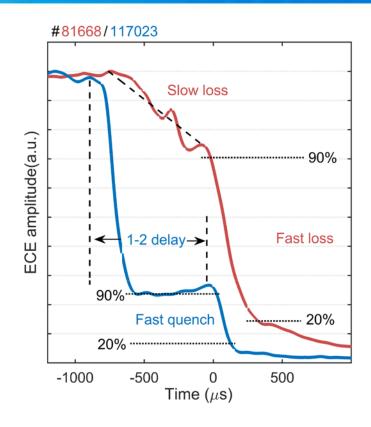
Characteristics of disruption mitigation via SPI and MGI

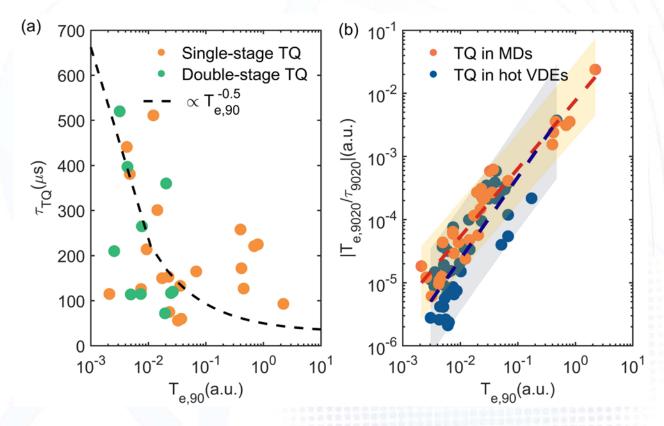
- Both shattered pellet injection (SPI) and massive gas injection (MGI) technologies have been developed for disruption mitigation on EAST.
 - SPI: Ne, H_2 +Ne; Pellet speed < 400 m/s.
 - MGI: Ar, Ne, He, D₂; Response time < 1 ms.



Characteristics of disruption mitigation via SPI and MGI

- Both shattered pellet injection (SPI) and massive gas injection (MGI) technologies have been developed for disruption mitigation on EAST.
 - SPI: Ne, H_2 +Ne; Pellet speed < 400 m/s.
 - MGI: Ar, Ne, He, D₂; Response time < 1 ms.
- Intended disruption triggered by SPI and MGI
 - While MGI tends to deposit more impurities at the edge, SPI penetrates deeper into the plasma and results in a shorter overall disruption duration.
 - The impurity trajectory is highly asymmetric in both the toroidal and poloidal directions.

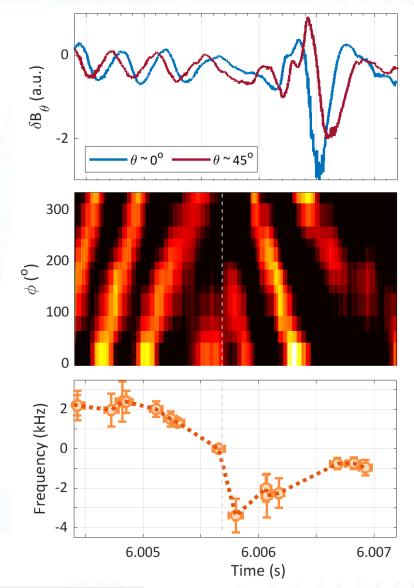

No clear difference in TQ process found


Rev. Sci. Instrum. 86 (2015) 053502; Fusion Eng. Des. 191 (2023) 113567; Nucl. Fusion 65 (2025) 016048

Typical TQ process in the EAST disruptions

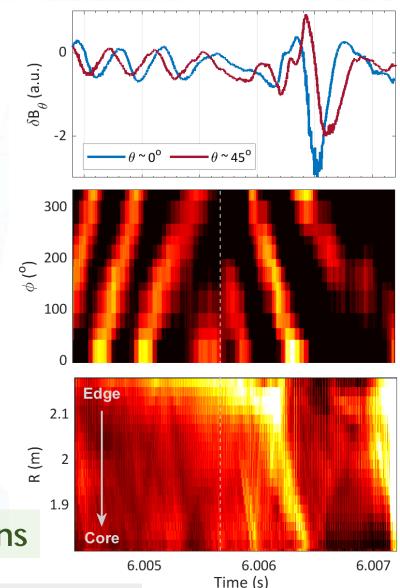
 Single-stage TQ and doublestage TQ during disruptions.

• A large range at the low temperature and short TQ durations at high T_e , not fully consistent with $T_e^{-0.5}$.



Impurity transport during the pre-TQ phase

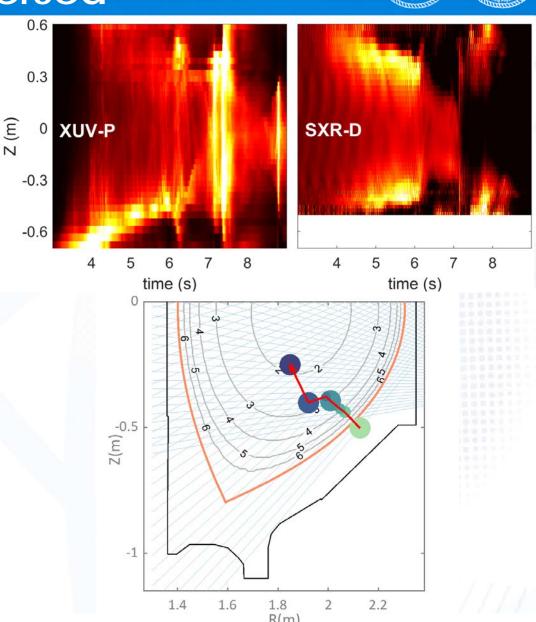
Rotation direction of magnetic island observed to reverse in the pre-TQ phase


- The 2/1 mode's rotation slows down and then reverses from the ion diamagnetic to the electron diamagnetic direction after neon injection into co-current NBI-heating plasmas.
 - The mode frequency changes from 2 kHz to −3 kHz in < 0.5 ms.

Rotation direction of magnetic island observed to reverse in the pre-TQ phase

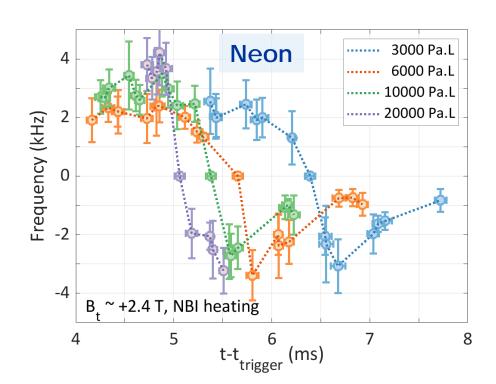
- The 2/1 mode's rotation slows down and then reverses from the ion diamagnetic to the electron diamagnetic direction after neon injection into co-current NBI-heating plasmas.
 - The mode frequency changes from 2 kHz to −3 kHz in < 0.5 ms.
- The radiation in the core region significantly increases following the rotation direction of the mode reversed.

Observed in both SPI and MGI triggered disruptions

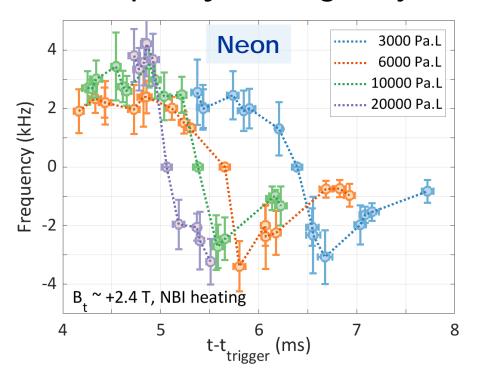

The core radiation enhanced following the rotation direction of the mode reversed

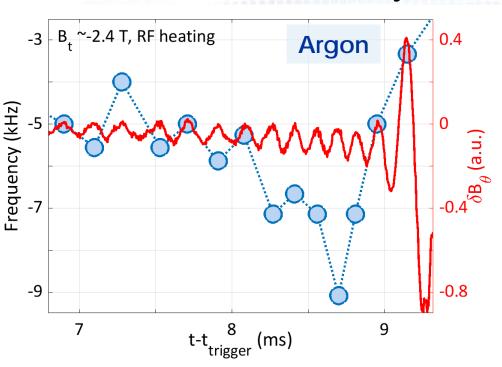
- The impurity influx divided into two stages according to the XUV and SXR detectors.
 - STAGE 1: impurities drift along ion diamagnetic direction; Outside of q=2 surface. Inward pinch speed ~ 60 m/s.

Rotation direction of the mode reversed


 STAGE 2: impurities drift along electron diamagnetic direction; Across q=2 surface. Inward pinch speed ~ 300 m/s.

Parameter dependence of mode-frequency change


- The phenomenon has been observed by scanning species and numbers of impurities, and heating methods.
 - Amount scan: Earlier and faster reversion of rotation direction.



Parameter dependence of mode-frequency change

- The phenomenon has been observed by scanning species and numbers of impurities, and heating methods.
 - Amount scan: Earlier and faster reversion of rotation direction.
 - The mode frequency changes from -5 kHz to -9 kHz in ~ 0.5 ms after argon injection into RF-heating plasmas.
 - The mode frequency after argon injection seems lower than after neon injection.

Change of mode frequency is mainly caused by poloidal angular frequency

Frequency of (2,1) tearing mode is written as

$$2\pi \cdot f_{\text{MHD}} = \Omega_{E \times B} + \Omega_{*e} + 0.71\Omega_{*T_e}$$

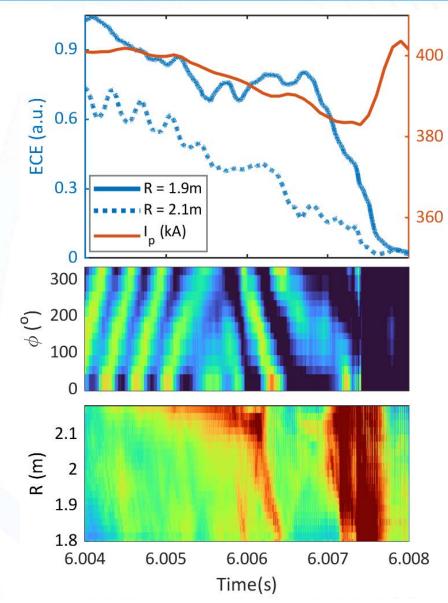
- $\Omega_{E\times B}$ can be determined by ion radial force balance equation.

$$\Omega_{E\times B} = U \cdot \nabla \zeta - qU \cdot \nabla \theta - \Omega_{*i}$$

Change of mode frequency is mainly caused by poloidal angular frequency

Frequency of (2,1) tearing mode is written as

$$2\pi \cdot f_{\text{MHD}} = \Omega_{E \times B} + \Omega_{*e} + 0.71\Omega_{*T_e}$$


- $\Omega_{E\times B}$ can be determined by ion radial force balance equation.

$$\Omega_{E\times B} = U \cdot \nabla \zeta - qU \cdot \nabla \theta - \Omega_{*i}$$

- The reversed time scale (< 0.5 ms) is much less than energy confinement time and momentum transport time, so the change of mode frequency is mainly caused by poloidal angular frequency.

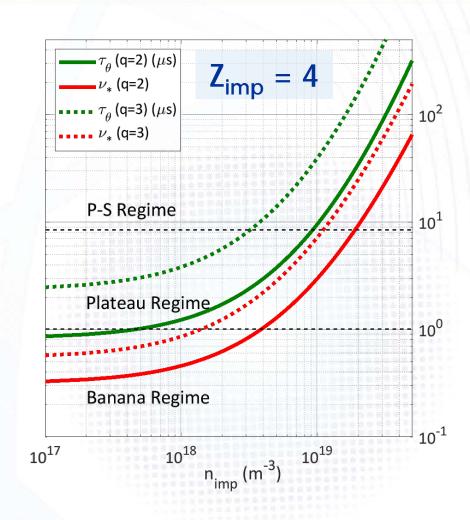
Poloidal rotation velocity

$$\delta U_{\theta} = -\frac{B_T}{R^2} \delta E_r$$

The neoclassical theory is applied to understand the phenomenon

- Time scale of frequency change (< 0.5 ms) is much less than $\tau_{\rm F}$ (50-100 ms) on EAST.
 - The neoclassical relaxation time in the collisional regime $\tau_{\theta} < 0.5 \text{ ms } (\tau_{\theta} \simeq q^2 R^2 v_{\rm i}/v_{T_{\rm i}}^2)$.

The neoclassical theory is applied to understand the phenomenon



- Time scale of frequency change (< 0.5 ms) is much less than $\tau_{\rm F}$ (50-100 ms) on EAST.
 - The neoclassical relaxation time in the collisional regime $\tau_{\theta} < 0.5 \text{ ms } (\tau_{\theta} \simeq q^2 R^2 v_{\rm i}/v_{T_{\rm i}}^2)$.

The neoclassical theory (2)

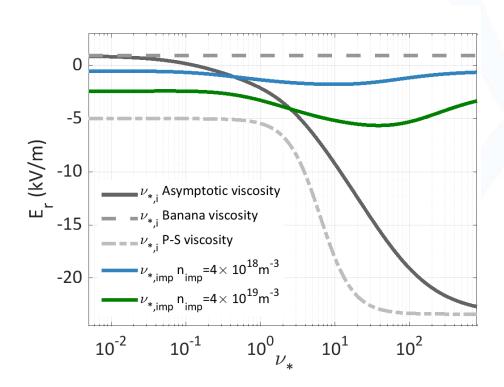
- The poloidal rotation can be driven by the viscosity associated with the collisionality and impurity.
 - In standard neoclassical theory, the poloidal component of the perpendicular E×B drift is damped by the poloidal (parallel) viscosity.

A model for poloidal rotation during the transient state

- The parallel momentum and heat flow balance equations for the impurity and ion species in the form of matrix equations are as followed.
 - particle and heat flow of impurity, radial electric field, and ion heat flow included.

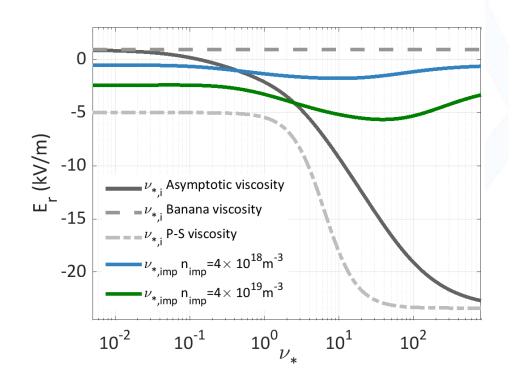
$$\begin{bmatrix} \frac{n_{I}m_{I}\tau_{ii}}{n_{i}m_{i}\tau_{II}}\mu_{00}^{I} + \alpha & \frac{n_{I}m_{I}\tau_{ii}}{n_{i}m_{i}\tau_{II}}\mu_{01}^{I} & \alpha \frac{B_{T}}{B_{p}} & -1.5\alpha \\ \frac{n_{I}m_{I}\tau_{ii}}{n_{i}m_{i}\tau_{II}}\mu_{10}^{I} & \frac{n_{I}m_{I}\tau_{ii}}{n_{i}m_{i}\tau_{II}}\mu_{11}^{I} + \alpha \frac{T_{i}}{T_{I}}\left(7.5 + \sqrt{2}\alpha x^{-1}\right) & 0 & -6.75\alpha x^{2} \\ -\alpha & 0 & -\mu_{00}^{i}\frac{B_{T}}{B_{p}} - \alpha \frac{B_{T}}{B_{p}} & \mu_{01}^{i} + 1.5\alpha \\ -1.5\alpha & -6.75\frac{T_{i}}{T_{I}}\alpha x^{2} & -\mu_{10}^{i}\frac{B_{T}}{B_{p}} - 1.5\alpha \frac{B_{T}}{B_{p}} & \mu_{11}^{i} + \left(\sqrt{2} + 3.25\alpha\right) \end{bmatrix} \begin{bmatrix} u_{0\theta}^{I}B^{2} \\ u_{1\theta}^{I}B^{2} \\ E_{T} \\ u_{1\theta}^{I}B^{2} \end{bmatrix}$$

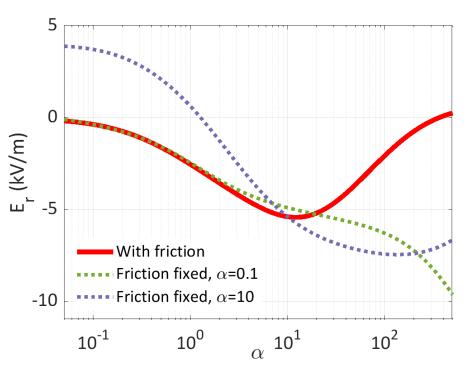
$$\alpha \equiv n_{\rm I} Z_{\rm I}^{2}/n_{\rm i} Z_{\rm i}^{2}$$
 (Impurity strength parameter)
$$x \equiv V_{\rm th,I}/V_{\rm th,i} \ll 1$$


Nucl. Fusion 21 (1981) 1079 Phys. Fluids B 3 (1991) 2050

$$=\begin{bmatrix} \alpha \frac{B_{T}T_{I}}{e_{I}B_{p}L_{pI}} + \alpha U_{0\parallel}^{i}B + 1.5\alpha \frac{B_{T}T_{i}}{B_{p}e_{i}L_{Ti}} \\ \alpha \frac{T_{i}}{T_{I}} \left(7.5 + \sqrt{2}\alpha x^{-1}\right) \frac{B_{T}T_{I}}{B_{p}e_{I}L_{TI}} + 6.75\alpha x^{2} \frac{B_{T}T_{i}}{B_{p}e_{i}L_{Ti}} \\ -\mu_{00}^{i}U_{0\parallel}^{i}B - \mu_{00}^{i} \frac{B_{T}T_{i}}{e_{i}B_{p}L_{pi}} - \alpha U_{0\parallel}^{i}B - 1.5\alpha \frac{B_{T}T_{i}}{B_{p}e_{i}L_{Ti}} - \alpha \frac{B_{T}T_{I}}{B_{p}e_{I}L_{TI}} \\ -\mu_{10}^{i}U_{0\parallel}^{i}B - \mu_{10}^{i} \frac{B_{T}T_{i}}{B_{p}e_{i}L_{pi}} - 1.5\alpha U_{0\parallel}^{i}B - \left(\sqrt{2} + 3.25\alpha\right) \frac{B_{T}T_{i}}{B_{p}e_{i}L_{Ti}} - 1.5\alpha \frac{B_{T}T_{I}}{e_{I}B_{p}L_{pI}} + 6.75\frac{T_{i}}{T_{I}}\alpha x^{2} \frac{B_{T}T_{I}}{B_{p}e_{I}L_{TI}} \end{bmatrix}$$

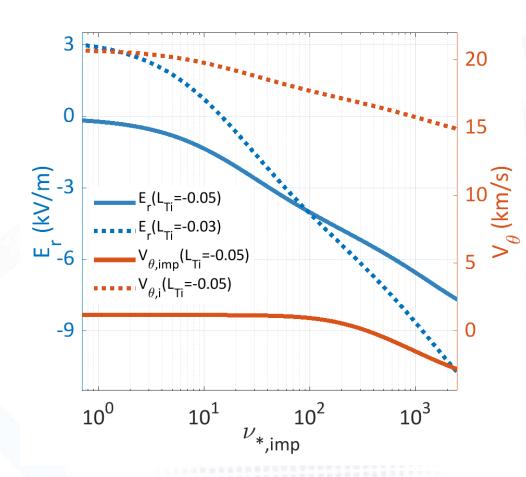
Effect of collisionality and impurity on radial electric field


- A clear change in radial electric field is observed as collisionality transitions from the banana to the P-S regime.
 - As the ion collisionality increases, the radial electric field decrease nonlinearly.

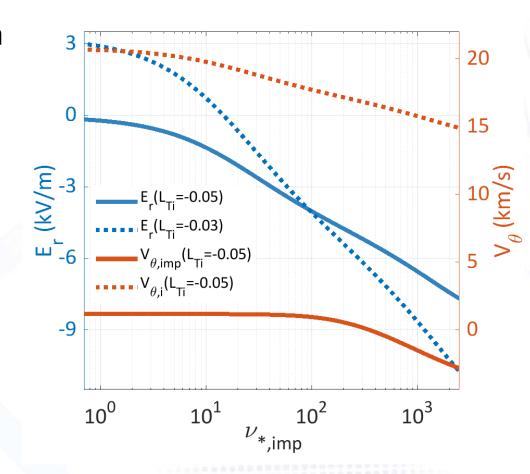


Effect of collisionality and impurity on radial electric field

- A clear change in radial electric field is observed as collisionality transitions from the banana to the P-S regime.
 - As the ion collisionality increases, the radial electric field decrease nonlinearly.
 - The viscosity is sensitive to impurity strength: impurity orbits perturb ion orbits and thereby alter the effective viscosity.

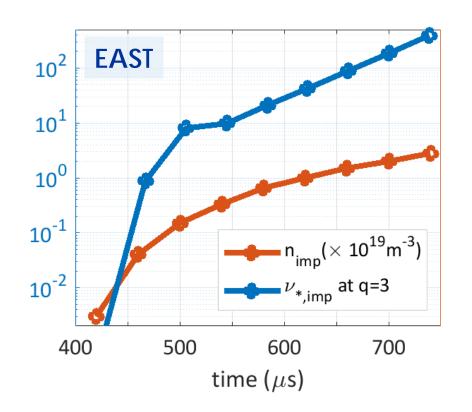


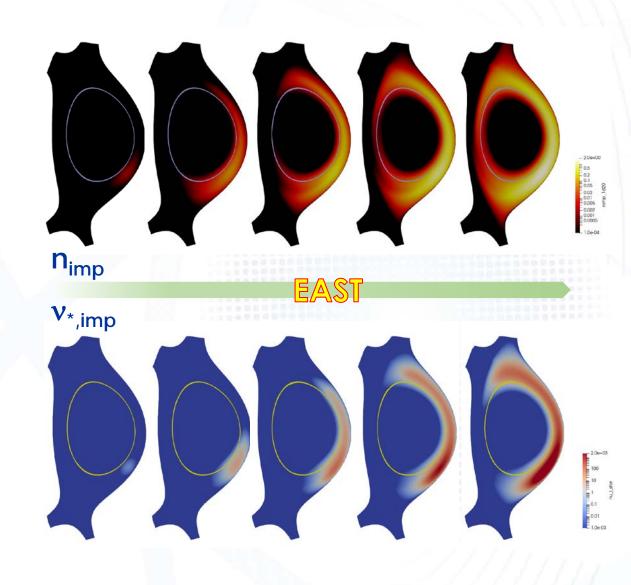
E_r estimated from the model is consistent with the experimental value


- Global effects with massive impurity injection show that:
 - The ion poloidal velocity is directed toward the ion-diamagnetic side, whereas the impurity poloidal velocity is directed toward the electrondiamagnetic side.
 - Variations in the ion poloidal flow are governed by the E×B drift.
 - The magnitude of the radial electric field increases as the ion-temperature gradient steepens.

E_r estimated from the model is consistent with the experimental value

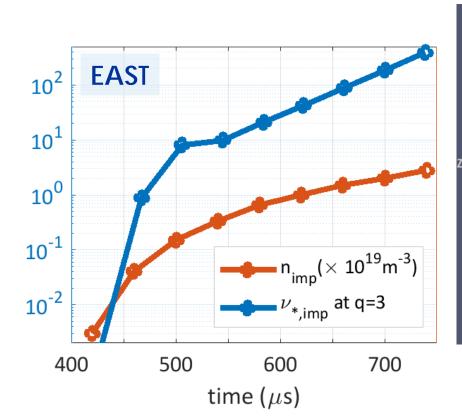
- Global effects with massive impurity injection show that:
 - The ion poloidal velocity is directed toward the ion-diamagnetic side, whereas the impurity poloidal velocity is directed toward the electrondiamagnetic side.
 - Variations in the ion poloidal flow are governed by the E×B drift.
 - The magnitude of the radial electric field increases as the ion-temperature gradient steepens.

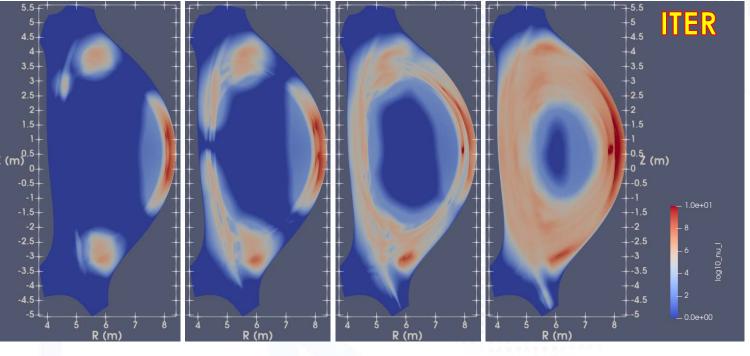



E_r is estimated in the range from -12 kV/m to -8 kV/m according to the typical parameters, consistent with the experimental value of ~ -10 kV/m.

Evolution of plasma parameters presents clear change in collisionality and amount of impurity

 Simulation results via JOREK with fixed viscosity show that the collisionality increases quickly from the banana to the P-S regime.



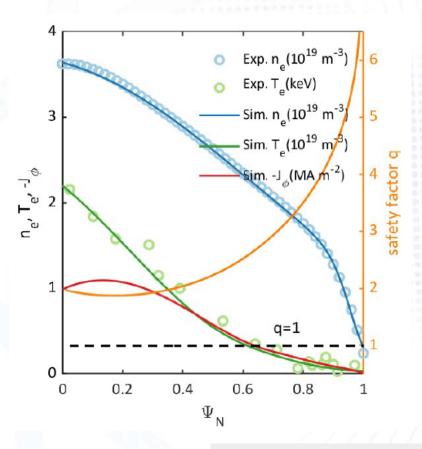

Evolution of plasma parameters presents clear change in collisionality and amount of impurity

 Simulation results via JOREK with fixed viscosity show that the collisionality increases quickly from the banana to the P-S regime.

 $u_{\text{imp, ITER}}$

Interpretive JOREK simulation of TQ triggered by MGI

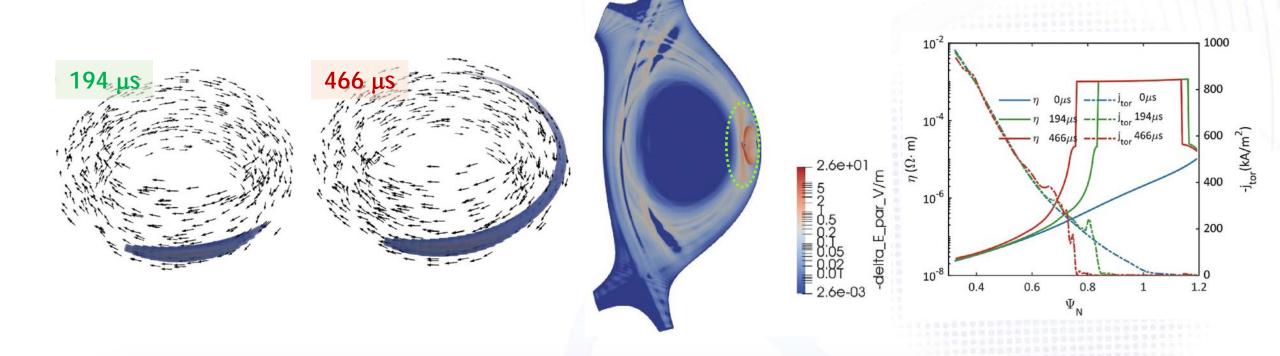
Simulation setup for disruptions by JOREK



 Models: single-fluid reduced nonlinear MHD model with non-equilibrium impurity treatment.

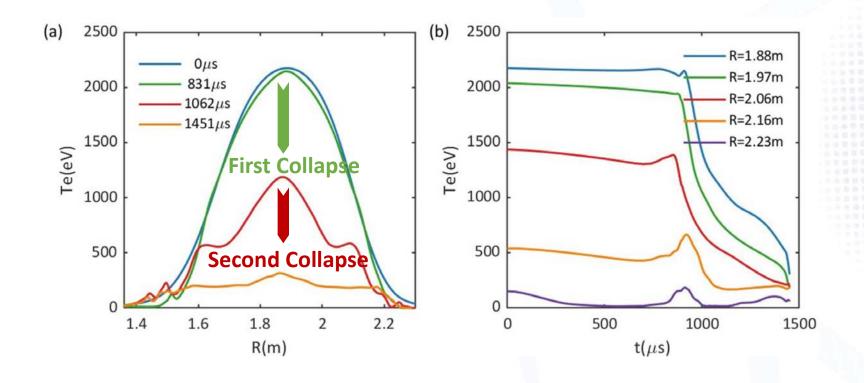
- The perpendicular diffusivity are chosen to keep the profile approximately

constant in the simulation.


- Simulation setup: A typical L-mode plasma with $I_P \sim 0.4$ MA and $q_{min} \sim 1.6$.
 - The initial core T_e is ~2.2 keV, electron and ion temperatures are assumed to be equal, and the core n_e is ~3.6×10¹⁹ m⁻³.
 - MGI triggered.

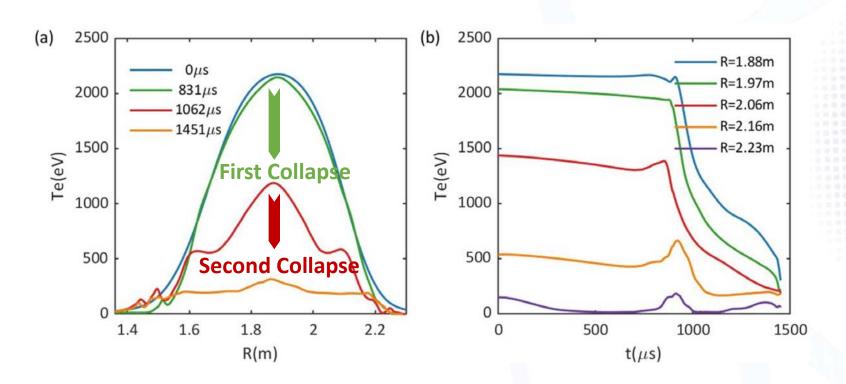
Impurity trajectory in toroidal direction

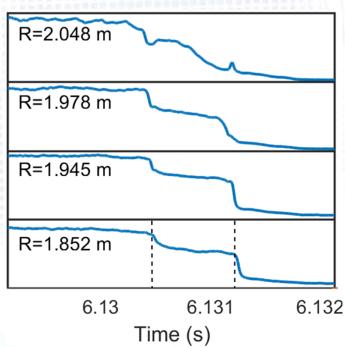
- Motion asymmetrically in toroidal direction
 - It is driven by a parallel electric field E_{II} of approximately 30 V/m.



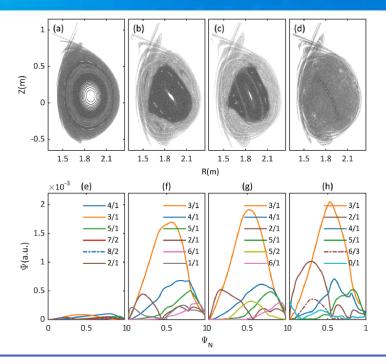
Current relaxation time > Resistivity increase time

Te evolution during typical double-stage TQ

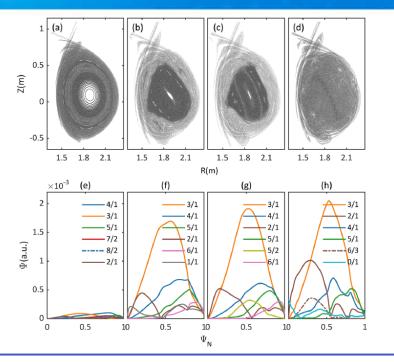

- Two distinct temperature collapses occur at t_1 = 850 μ s and t_2 = 1400 μ s.
 - First collapse: The edge temperature collapses firstly, companied with core thermal energy loss and the formation of a temperature plateau.

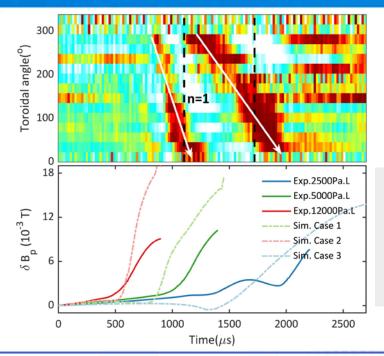


Te evolution during typical double-stage TQ


- Two distinct temperature collapses occur at $t_1 = 850 \mu s$ and $t_2 = 1400 \mu s$.
 - First collapse: The edge temperature collapses firstly, companied with core thermal energy loss and the formation of a temperature plateau.
 - consistent with the experimental observation.

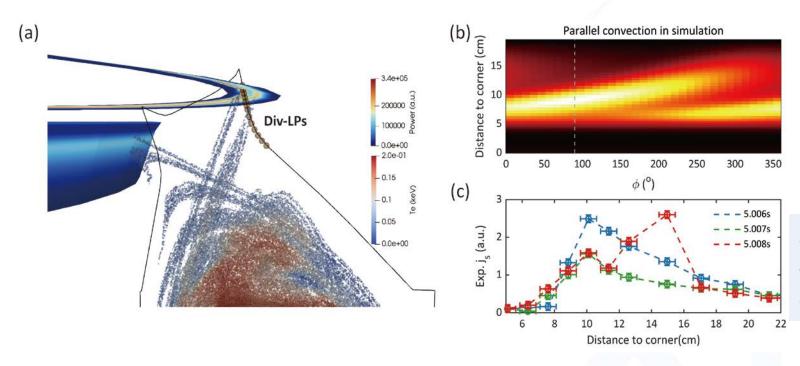
MHD activities during typical double-stage TQ




1-2 Delay stage

- The growth of the 2/1 island results in a decrease in core temperature. The 3/1 mode couples with the 4/1 and 5/1 modes, contributing to edge stochasticity.
- Second collapse
 - Non-linear interaction between the 3/1 and 2/1 modes primarily leads to global stochasticity.

MHD activities during typical double-stage TQ


The n=1 mode grows significantly before the TQ, consistent with the simulation results.

1-2 Delay stage

- The growth of the 2/1 island results in a decrease in core temperature. The 3/1 mode couples with the 4/1 and 5/1 modes, contributing to edge stochasticity.
- Second collapse
 - Non-linear interaction between the 3/1 and 2/1 modes primarily leads to global stochasticity.

Strike point splitting on the divertor during the TQ

Saturated ion flux measurement obtained by Langmuir probes consistent with simulation results

- The simulated parallel convective particle flux at the upper-outer target, combined with the strike-point splitting, exhibits an n = 1 structure.
 - This result provides an explanation for the broadening of energy deposition width during the TQ in ASDEX Upgrade and JET.

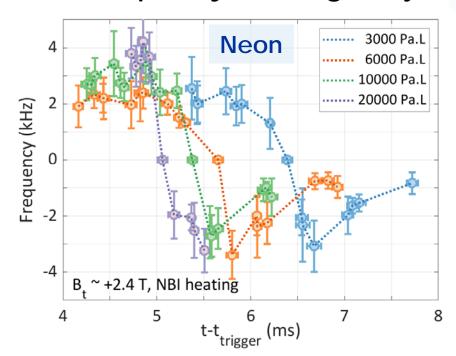
Summary

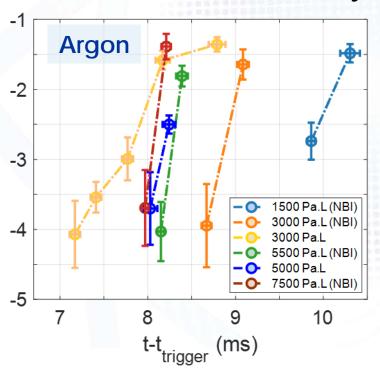
- Thermal quench dynamics in massive-impurity-injection triggered EAST disruptions have been demonstrated in experiments and simulations.
 - ✓ Sudden change in mode frequency: A sudden change of the radial electric field (E₁), caused by collisionality transition from the banana to the P-S regime, can drive the poloidal rotation and enhance impurity influx.
 - ✓ Double-stage TQ: The 3/1 mode couples with the 4/1 and 5/1 modes, contributing to edge stochasticity. The non-linear interaction between the 3/1 and 2/1 modes primarily leads to global stochastic.
 - ✓ 3D splitting of heat flux: The parallel convective particle flux at the upper-outer target, combined with the strike-point splitting, exhibits an n = 1 structure.

Summary

- Thermal quench dynamics in massive-impurity-injection triggered EAST disruptions have been demonstrated in experiments and simulations.
 - ✓ Sudden change in mode frequency: A sudden change of the radial electric field (E,), caused by collisionality transition from the banana to the P-S regime, can drive the poloidal rotation and enhance impurity influx.
 - ✓ Double-stage TQ: The 3/1 mode couples with the 4/1 and 5/1 modes, contributing to edge stochasticity. The non-linear interaction between the 3/1 and 2/1 modes primarily leads to global stochastic.
 - ✓ 3D splitting of heat flux: The parallel convective particle flux at the upper-outer target, combined with the strike-point splitting, exhibits an n = 1 structure.

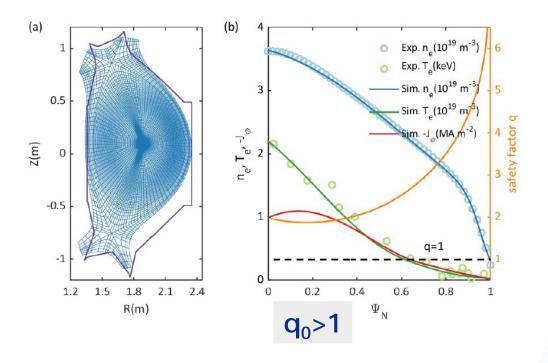
Thanks!




Backup

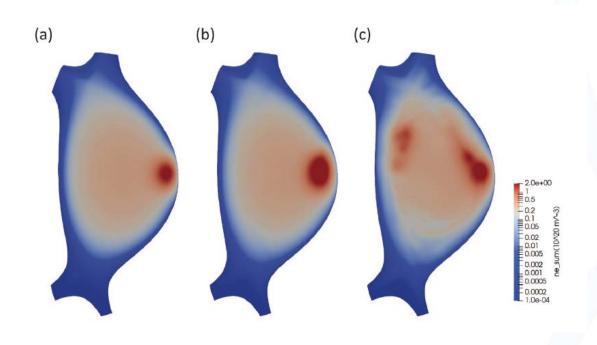
Parameter dependence of mode frequency

- The phenomenon has been observed by species and numbers of impurities, and heating methods.
 - Amount scan: Earlier and faster reversion of rotation direction
 - The mode frequency changes from -5 kHz to -9 kHz in ~ 0.5 ms after argon injection into RF-heating plasmas.
 - The mode frequency after argon injection seems lower than after neon injection.



Models and simulation settings

Models: single-fluid reduced MHD model with non-equilibrium impurity treatment



η_0	8×10 ⁻⁹ Ω·m
μ_0	$3\times10^{-6}{\rm kg\cdot m^{-1}s^{-1}}$
$\mu_{ ,0}$	1.5×10 ⁻⁵ kg⋅m ⁻¹ s ⁻¹
D _{⊥,0}	1 m ² s ⁻¹
D _{,0}	$1.3 \times 10^5 \text{m}^2 \text{s}^{-1}$
χ _{⊥,0}	15 m ² s ⁻¹
$\chi_{ ,o}$	7.7×10 ¹⁰ m ² s ⁻¹
	μ_0 $\mu_{ ,0}$ $D_{\perp,0}$ $D_{ ,0}$

The perpendicular diffusivity are chosen to keep the profile approximately constant in the simulation.

Impurity trajectories

Neon particles

Move inward along the major radius

Deposit at $\Psi_N \sim 0.7$

Extend along magnetic field lines

Create new deposition spots at different poloidal positions