Development of High-performance Long-pulse Discharges in KSTAR ^{1*}Hyun-Seok Kim, ¹YoungMu Jeon, ¹Hyunsun Han, ¹Kimin Kim, ¹KwangPyo Kim, ¹Heungsu Kim, ¹Tongnyeol Rhee, ¹Juhyung Kim, ¹Junghee Kim, ¹Dongcheol Seo, ¹Eunnam Bang, ¹Hee-Jae Ahn, ¹Hyun-Sik Ahn, ¹Jaesic Hong, ¹Jinhyun Jeong, ¹Jongdae Kong, ¹Jongdok Kwak, ¹Jongkook Jin, ¹Jungyo Bak, ¹Kaprai Park, ¹Kyu-Dong Lee, ¹Mi Joung, ¹Sang Woo Kwag, ¹Sang-Hee Hahn, ²SangKyeun Kim, ¹Si-Woo Yoon, ¹Sonjong Wang, ¹Woong Chae Kim, ¹Young-Ok Kim, and KSTAR Teams *hskim0618@kfe.re.kr ¹Korea Institute of Fusion Energy, Daejeon, Republic of Korea ²Princeton Plasma Physics Laboratory, Princeton, United States of America ## Summary and Plans as the main scenario of KSTAR Major technical issues limiting high-performance long-pulse operation have been systematically addressed in KSTAR. Heat control on plasma-facing components has been solved by optimizing plasma shape control and upgrading the actively cooled tungsten monoblock divertor. The magnetic signal drift was also resolved through the installation of thermal shielding blocks on magnetics and implementation of a real-time linear drift correction algorithm in the plasma control system. Although performance degradation in the long-time scale remains partially solved—mainly associated with weak, long-lasting TAEs and fast-ion transport—the long-time gas fueling and shape scenario optimization have significantly improved plasma sustainment. Building on these results, a new effort is underway to develop reproducible ITB formation and q-profile control scenarios enabling steady high-β_p operation and long-pulse plasma sustainment. ## > Challenges in achieving high-performance long-pulse discharges — scenario, heat, signal drift Accurate ECH/CD control for high β_p state ✓ Heat control of PFCs ✓ Mitigation of magnetic signal drift #21735 Poloidal Limiter efore installation of protector, $\Delta |S| = |S_{\#21757, \text{ tpulse} \sim 88 \text{ s}}| - |S_{\#21756, \text{ tpulse} \sim 16 \text{ s}}|$ Ionized fast ions at HFS ECH/ECCD must strike poloidal limiters & be deposited to a inboard divertor. narrow vicinity Optimizing shape control near the magnetic axis ($\psi_N \sim 0.2$). • Actively cooled tungsten monoblock divertor Suppressing/mitiga MP_7 at outboard side (θ , rad.) ting n=3 TAE with ECH/CD injection • MP_z mainly shows time (s) improves fast ion nonlinear signal drift **Central Divertor Outboard Divertor Inboard Divertor** confinement. — carbon • Coil winding of MP₇ facing to the plasma. Difference of Rout using un-corrected and corrected signal drift Thermal shielding **protector** effectively KSTAR high-β_P discharge adopted blocked plasma heat. ∆T<15 °c ∆T<15 °C - Weak, long-lasting TAE → progressive degradation on long-time scale - Fast-ion pressure reduced until TAE self-disappeared • TAEs self-disappeared $\rightarrow \beta_P$ converges to $\sim 2.0-2.2$ enabled stable long-pulse operation with minimized radiation and tungsten accumulation. 30th IAEA Fusion Energy Conference (FEC2025), 13 - 18 Oct. 2025, Chengdu, China time (s) ## **Acknowledgments** This research was supported by the R&D Program of "High Performance Tokamak Plasma Research Development (EN2501-16)" through the Korea Institute of Fusion Energy (KFE) funded by the Government funds, Republic of Korea.