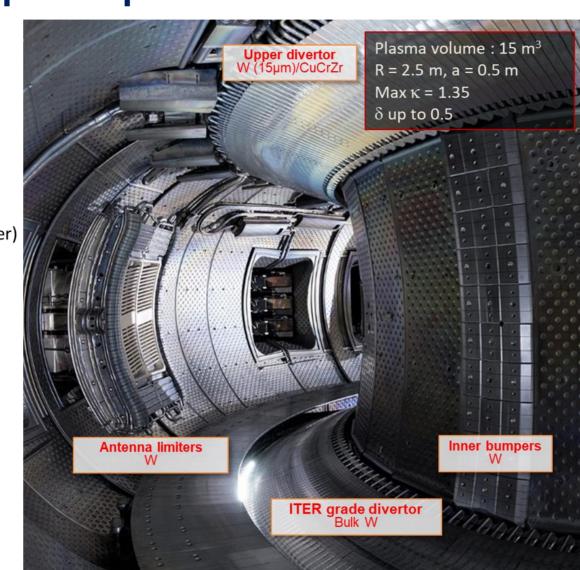


WEST LONG-PULSE ACHIEVEMENTS IN SUPPORT OF **NEXT-STEP FUSION DEVICES**

R. Dumont¹, T. Fonghetti¹, P. Maget¹, P. Manas¹, J.-F. Artaud¹, T. Barbui², C. Bourdelle¹, L. Colas¹, G. Ciraolo¹, Y. Corre¹, L.F. Delgado-Aparicio², A. Ekedahl¹, N. Fedorczak¹, P. Forestier-Colleoni¹, A. Gallo¹, J. Gaspar³, E. Geulin¹, B. Guillermin¹, A. Grosjean⁴, C. Guillemaut¹, J.P. Gunn¹, J. Hillairet¹, J. Huang⁶, F. Imbeaux¹, E. Joffrin¹, E. Lerche⁵, M. Li⁶, X. Litaudon¹, D. Mazon¹, S. Mazzi¹, J. Morales¹, Ph. Moreau¹, R. Nouailletas¹, P. Puglia¹, C. Reux¹, N. Rivals¹, Y. Savoye-Peysson¹, E. Tsitrone¹, S. Vartanian¹, E. Vergnaud³, and the WEST team[#], and the EUROfusion Tokamak Exploitation team^{##}

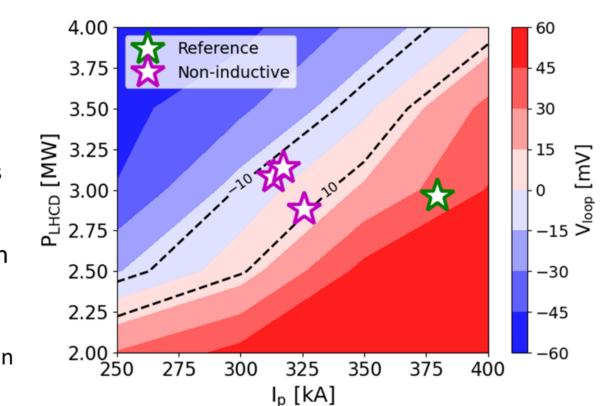
¹CEA, IRFM, Saint-Paul-lez-Durance Cedex, France ²Princeton Plasma Physics Laboratory, Princeton, NJ, USA

³Aix Marseille Université, Marseille, France ⁴University of Tennessee, Knoxville, USA

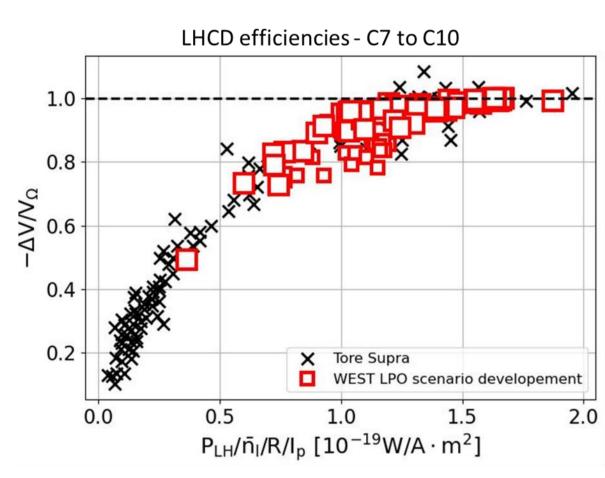

⁵Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium ⁶Institute of Plasma Physics, Chinese Academy of Sciences

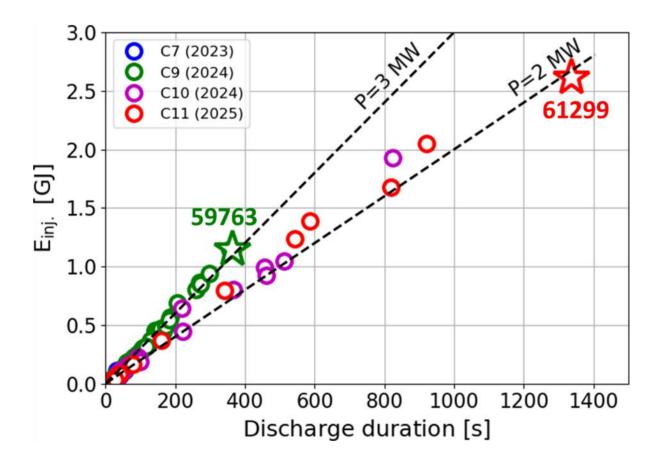
*See http://west.cea.fr/WESTteam, ** See the author list of E. Joffrin et al 2024 Nucl. Fusion 64 112019.

Long pulse operation in WEST

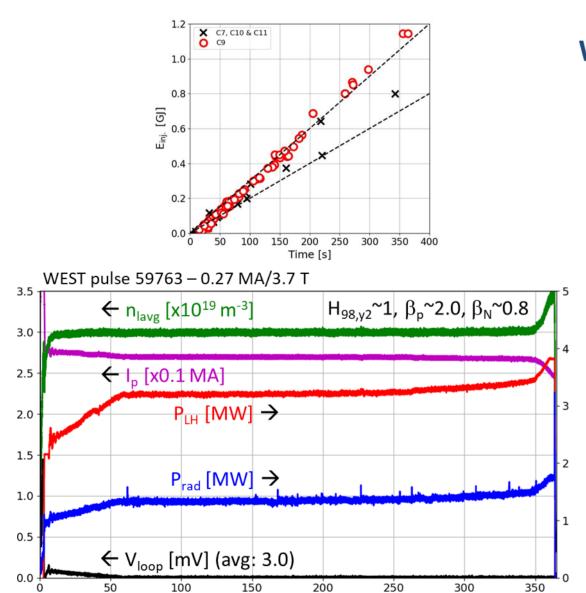

Long pulse operation (LPO): a crucial element in the development of fusion-based power plants

- Long Pulse Operation [Litaudon, this conference]
 - Discharges with durations well above the characteristic plasma times, approaching plasma-wall interaction timescales
 - - First-wall material studies (erosion, surface damage, fuel retention)
 - Technical aspects related to long pulses [Lamaison, this conference] • Integrated high-performance long-pulse plasma scenarios (this poster)
- WEST: a testbed to prepare for long pulse operation
- in ITER [Bucalossi, this conference] Superconducting magnets, nominal field B₀~3.7 T
- Full-tungsten environment, with periodic glow discharge boronizations [Geulin, this conference]
- Bespoke radiofrequency (RF) systems [Bernard, this conference]
- ICRH (~55 MHz)
- 3 load-resilient antennas: 9 MW/30 s 3 MW/1000 s
- LHCD (3.7 GHz) 2 launchers: 7 MW/CW
- ECRH/CD (105 GHz)
- 1 antenna: 1 MW, started operation in 2025 → 3 MW (2026) → dominant electron heating / low torque

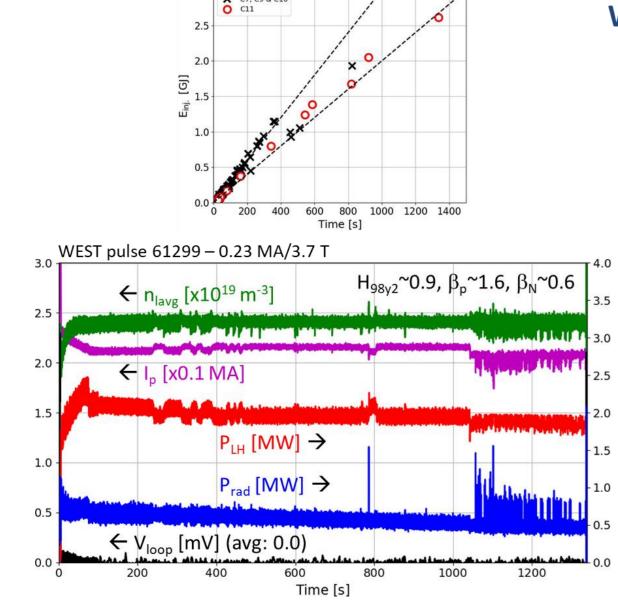

Pulse development in WEST based on predict-first integrated modelling


- Fully non-inductive discharges → complex non-linearities, especially in W environments (current profile, power source, heat and particle transport...)
- Simplified model used for LHCD deposition profile [Dumont, PoP 2000], with experimental scaling law for current drive efficiency: $\eta_{LH} \alpha \tau_{E}^{0.4}$ [Goniche, AIP proc. 2005]
- TGLF-sat2 model for turbulent transport [Staebler, PPCF 2020; Angioni, NF 2022]
- Additional elements, with strong impact on available
- parameter space: • Superthermal electron losses → heating of cooling pipes
- Occurrence of q-profile reversal typical of LHCD plasmas
- Predict-first modelling strategy → operational domain
- Reference pulse from 2023 (57757, 101 s, V_{loop}=47 mV) for thorough code validation
- Predictive HFPS simulations to identify parameter domain adequate for non inductive operation [Fonghetti, NF 2025]

Long pulse achievements in WEST


Continuous progress in long pulse development, based on LHCD power

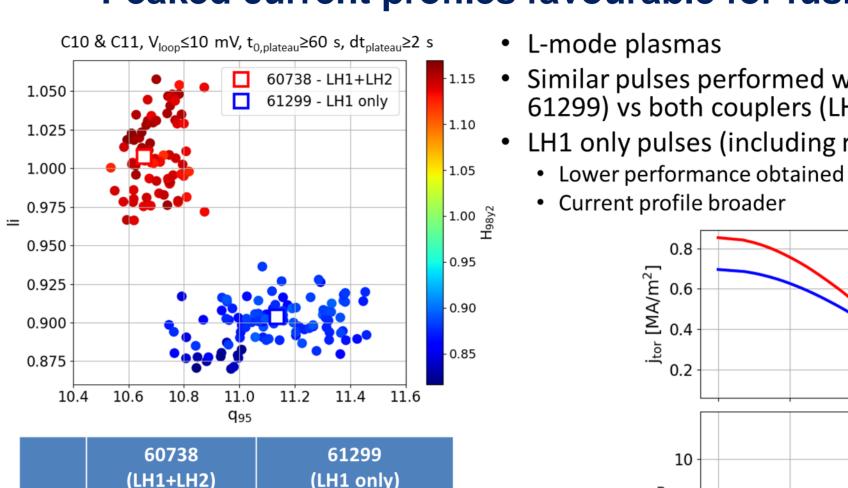
- Tore Supra LHCD efficiencies recovered, consistently with Fokker-Planck calculations (LUKE) predicting no significant influence of W impurities on LHCD [Peysson, IAEA 2020]
- Twenty L-mode discharges exceeding 200 s performed, with LHCD power only


Outgassing from far-off elements limited development of 3 MW-class scenarios

WEST pulse 59763

- Duration: 364 s
- Energy injected/extracted: 1.15 GJ
- Double feedback-control (V_{loop}, V_{G0}), (I_p, P_{LH}) Plasma current 0.27 MA, LHCD power ~3-3.5 MW
- Loop voltage: 3 mV → could in principle last >1100 s
- · No particular issue related to tungsten accumulation
- Increase of density at ~300 s, caused by outgassing of
- remote elements in vacuum vessel • I_p decrease despite increase of LHCD power by feedback
- control system
- Slow conditioning effect observed between pulses
- · However, conditioning time incompatible with experimental time envelope for long pulse developments in 2025 [Dumont, APS 2024]

Lower plasma currents allowed further record pulses to be performed


WEST pulse 61299

- Duration: 1337 s
- Energy injected/extracted: 2.61 GJ (Current duration/energy record for WEST)
- Plasma current 0.23 MA, LHCD power ~2 MW
- Loop voltage: 0 V (fully non-inductive)
- Performed in H₂ gas. Similar long pulses performed in $D_2 \rightarrow$ isotope effect under study Quite resilient to external perturbations (failures of
- RF plant, W ingress [Corre, this conference], ...)
- Mild MHD activity present during whole duration when using one LH antenna
- In this particular pulse: non-linear MHD regimes

with spontaneous transitions

Physics analysis of WEST long-duration pulses

Peaked current profiles favourable for fusion performance

- Similar pulses performed with one LH coupler (LH1, 61299) vs both couplers (LH1+LH2, 60738)
 - LH1 only pulses (including record pulse)

 Current profile 	broader
0.0 Jor [MA/m ²] 0.0	— 60738, LH1+LH2 — 61299, LH1 only
ے 0.4 0.2	
10 − ອັ 5 −	

 ρ_{tor} NICE equilibrium – t = [92-292] s

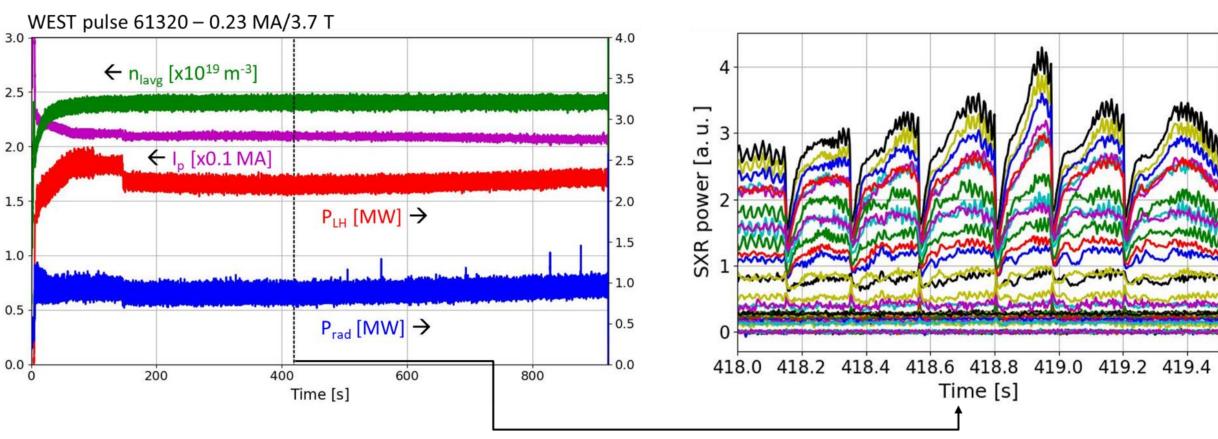
 $t_0 = 417.4 \text{ s}, \Delta t = 25 \text{ ms}$

(ap<mark>pro</mark>x.)

Mild MHD activity likely responsible for confinement degradation

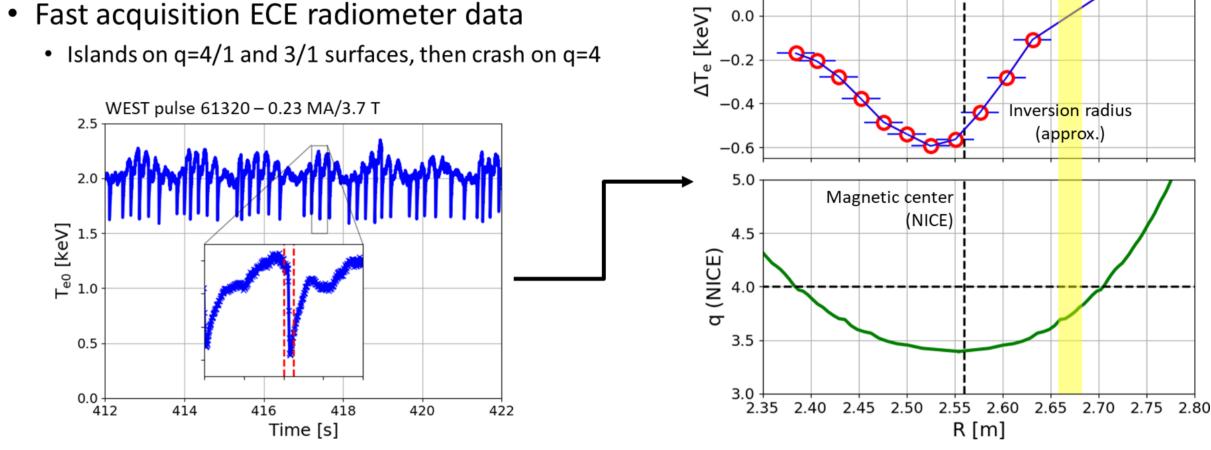
- Presence of MHD activity in 2 MW pulses with LH1 coupler only
 - Steady mode at ~0.8 kHz

2.0

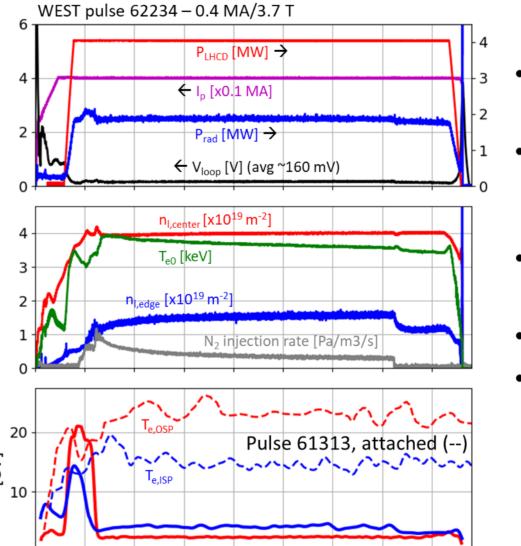

8.0

1.1

- LHCD efficiency moderately impacted
- Periodic relaxations of central electron temperature


1.6

0.9



- Toroidal mode number n=1
- Poloidal mode m=3 and/or m=4

Prospects for long pulse development in WEST

Ongoing effort to extend long pulse operation to XPR regime

- Record duration discharges in attached divertor regime: T_{e,ISP}~15 eV, T_{e,OSP}~20 eV
- Development of fully non-inductive scenarios in XPR regime (next-step relevant plasma edge conditions) [Rivals, this conference]
- LHCD efficiencies lower than attached divertor regime efficiencies at comparable levels of power/density
- Frequent MHD activity
- Most recent pulses made it to the end in XPR regime • 32 s with V_{loop} ~160 mV \rightarrow could be extended to ~45-50 s
- T_{e.ISP}~3.5 eV, T_{e.OSP}~2.0 eV

EC power to enlarge parameter space, increase performance

• EC power available in WEST: 1MW (2025) → 3MW (2026) Applications to long-duration pulses

30 35

15

- Central ECRH against radiative collapses observed as density increased [Ostuni, NF 2022; Morales, NF 2025] or ICRF power applied [Maget, PPCF 2023]
- Counterbalances central radiation in unstable range of electron temperatures (T_e~1.5-3keV)
- "Anchors" LH deposition profile to plasma core [e.g., in EAST: Du, NF 2018; Li, NF 2023]
- Central ECCD to improve overall CD efficiency, control q-profile reversal [Fonghetti, NF 2025]

Summary and outlook

- Many adaptations to WEST aimed at exploring various aspects of Long Pulse Operation in future devices
- Technical and operational issues and remedial actions
- Plasma-wall equilibration (e.g. fuelling & exhaust, outgassing, ...)
- Non-linearities in heat source / current profile / heat and particle transport / W radiation
- Predict-first integrated modelling strategy -> several classes of long pulse L-mode scenarios developed and implemented
- Operation at 3-3.5 MW up to ~400 s limited by outgassing, with slow conditioning observed
- New records achieved at P_{LH}~2 MW, up to 22 min, 2.61 GJ, in attached divertor regime
- **Development of non-inductive pulses in XPR regime** • Pulses up to ~1 min so far, with divertor electron temperatures typical of detached regimes
- EC power expected to enlarge parameter space, increase plasma performance in non-inductive regimes

Acknowledgements. This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.