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2Physics Basis and Objectives of Long-pulse operation in KSTAR
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 Goal To establish stable and sustainable high-performance plasma operation scenarios
that can support long-pulse tokamak experiments and future steady-state fusion reactors

 Objective To demonstrate and evaluate the long-pulse operation capability of the KSTAR device
through integrated plasma control and system performance tests

 Focus To identify and address physics and engineering challenges
encountered during long-pulse operation

 Methodology Employing NBI and ECH as the primary H&CD systems and KSTAR high βP scenario
for sustaining high-performance long-pulse plasma, 
enabling investigation of NBI-driven fast ion transport

 Significance Utilizing KSTAR long-pulse operation as a unique experimental platform
to investigate NBI-driven fast ion transport and its impact on plasma sustainment, 
providing ITER-relevant physics insight into steady-state operation
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KSTAR High βP Discharge1.

Mitigation of Magnetic Signal Drift3.

Progressive Performance Degradation4. 

Outline

Heat Control of PFCs2.
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KSTAR High βP Discharge



5KSTAR Long-pulse Approach Began in 2015
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• achieved high performance βP≥3.0 with high q95=7-11.

• fNI~1.0 for ~10 s, fBS~0.5.

• but its βP degraded in long-time scale.

• without ITB.

 KSTAR high-βP discharge is adopted 
as the main scenario of KSTAR long-pulse discharge.

• Since then, full reproduction has been limited by the change in 
conditions, mainly due to the reduced availability of 170 GHz 
ECH.



6Accurate ECH/CD Control for High βP State
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 ECH/ECCD must be deposited to a narrow 
vicinity near the magnetic axis (ψN~0.2). 

• #18597 typical H-mode, #18602 high βP mode
• Both discharges share nearly identical operating 

conditions, except for BT. 
• In high βP discharge #18602, 

~30% improvement in βP

~50% reduction in VL

• Suppressing/mitigating n=3 TAE with ECH/CD 
injection improves fast ion confinement.

 For more detailed results on the KSTAR high-βₚ 
discharge, please refer to Y. Jeon’s talk on Saturday 
morning session.



7Challenges in Extending Pulse Length Beyond ~90 s
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• Plasma performance degrades over time, 
~20% after 20 s.

• Degradation increases VL & flux consumption.
• Eventually reaches PF coil current limit.

* Arrows indicate “degradation in time” occurred up to ~40 s.

 High βP scenario optimized over years, 
as βP increased and VL decreased. 
However, 

for tpulse~200 s 

for tpulse~100 s 
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Heat Control of PFCs



9Poloidal Limiter Overheats due to Fast Ion Orbit Loss
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Poloidal limiter

• Low IP (400 kA) long-pulse limited by PL overheating from fast ion impact.
• Ionized fast ions at HFS strike poloidal limiters & inboard divertor.
• With 3 MW PNB, max limiter load ≈ 6 MW/m².

*NuBDeC code, T. Rhee PoP26(2019)112504

Operation limit (TC)



10Plasma Shape Dependence of Fast Ion Loss to Poloidal Limiter
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• Rout increased almost linearly from ~50 s, reaching 2.27 m at 89 s, affected by magnetic probe signal drift.
• Increase in Rout → more fast ions lost to poloidal limiter.

 For long-pulse discharge, plasma shape optimized by maintaining Rout < ~2.21 m.

PL3

PL1



11Actively Cooled W-shaped Tungsten Divertor
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• Capable of handling ∼10 MW/m² steady-state heat flux, 
demonstrating ITER-relevant thermal performance.

• Actively cooled divertors: ΔT < 15 °C in 102-s high-
performance discharge.

• No PFC temperature issues expected up to 300 s (KSTAR 
goal) with present injection power ~12 MW. △
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Mitigation of Magnetic Signal Drift



13Mitigation of Nonlinear Signal Drift in Magnetics
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 Nonlinear magnetic drift impact on plasma shape
• Magnetics strongly affected by nonlinear drift in hot, 

long-pulse plasma.
• Drift led to unintended plasma shape change.

MPZ mainly shows 
nonlinear signal drift

• Coil winding of MPZ
facing to the plasma.

• Thermal shielding 
protector effectively 
blocked plasma heat.

Before installation of protector, Δ|S| = |S#21757, tpulse~88 s| - |S#21756, tpulse~16 s|
After  installation of protector, Δ|S| = |S#27031, tpulse~87 s| - |S#27026, tpulse~10 s|
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Shot count in 2021 KSTAR campaign
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s) Located behind lower central divertor 

• Many signals show drift > 0.3 mV/s per day. (criterion < 0.3 mV/s)
• Morning vs. afternoon shots → different shapes in rtEFIT.
• Drift returns to IDLE next day. (recovered)
• Drift level influenced by discharge pulse length.

 Implementation of real-time linear signal drift correction algorithm in PCS

Successful Operation of Real-time Linear Drift Correction

 Accumulated Signal Drift of Magnetic Probes in a day

• Getting linear slope and offset of drift from previous selected discharge.
• < 2 cm plasma shape change during 102 s.
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Plasma Performance Degradation



16Progressive Degradation of Plasma Performance over Time
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• Degradation observed over long-time scale (~10³ τE)
• Degradation more severe with longer pulse length
• Degradation more severe with higher performance
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17Impact of TAEs on Progressive βfast Degradation
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 degradation process related to TAEs
• High βP plasma → better fast-ion confinement, vulnerable to TAE
• TAE activated spontaneously, but weakened by ECH injection
• Weak, long-lasting TAE → progressive degradation on long-time scale
• Fast-ion pressure reduced until TAE self-disappeared
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tdegraded ≤ 20 s
tdegraded ≥ 40 s

βP,degraded
βP,init

RβP ≡ • TAEs self-disappeared
→ βP converges 

to ~2.0–2.2

 H.-S. Kim and Y. Jeon et al., 
Nucl. Fusion 64 016033 (2025)



18Minimized Performance Degradation with W Divertor
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• Performance degradation effectively minimized in 2023.
• Optimized long-time gas fueling sustains high βP (>2.5) plasmas.
• Stable performance maintained for ~70 s. (high reproducibility)
• Effect not observed in past carbon divertor configurations. 
• With W-shaped divertor, SOL conditions appear modified.
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 Sustained high-βₚ operation achieved through 
optimized gas fueling scenario



19Control of Radiative Power in W Divertor Plasmas
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 RX,top adjustment effectively reduced tungsten accumulation and Prad

• W divertor increased Prad by 3–4× compared to the carbon divertor.
• Lowering RX,top decreased Prad and IWI simultaneously.
• Optimized shape scenario enabled stable long-pulse operation with 

minimized radiation and tungsten accumulation.



20102-s Sustained High-performance Plasma
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• Vloop~70 mV, βP~2.5, βN~2.1, Te,core>6.0 keV, Ti,core~2.5 keV, �ne,core~3.0x1019 m-3.
– Plasma parameters comparable to other long-pulse discharges.

• Actively cooled W-shaped tungsten divertor 
successfully operated.

• Real-time linear drift correction algorithm of 
magnetics successfully implemented in PCS.

• Re-optimized shape scenario for W divertor applied.
• Optimized long-time gas fueling scenario applied.

RX,upper (inactive)

#34639
~3s, ~8s, ~12s

Rin

 Performance maintained for ~70 s with greatly minimized degradation. 



21Summary and Plans for Longer Pulse Discharge
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• Heat control on PFC (solved)
 Optimizing shape control and major upgrade of actively cooled W monoblock divertor

• Magnetic signal drift in the long-time scale (solved)
 Thermal shielding block on the magnetic probes
 Real-time linear drift correction algorithm in PCS

• Performance degradation in long-time scale (partially solved)
 Identified cause: weak, long-lasting TAEs fast ion transport βP,fast degraded
 Long-time gas fueling & shape scenario optimization under W-shaped divertor

 Securing solutions for high-performance long-pulse discharge issues

• Achieve 300-s high-performance operation by realizing a nearly full non-inductive plasma state (fNI ≥ 0.95).
• Develop reproducible ITB formation and q-profile control scenarios enabling steady high-βₚ sustainment.

(in collaboration with DIII-D)

 Plans for longer high-performance discharges
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"Thank you for your attention!"

"KFE's Vision:

Creating a New Sun
to Illuminate the Next Generation"

FUSION: Fundamental, Unlimited, Sustainable, Innovative, Overturning, No Radioactive Waste
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