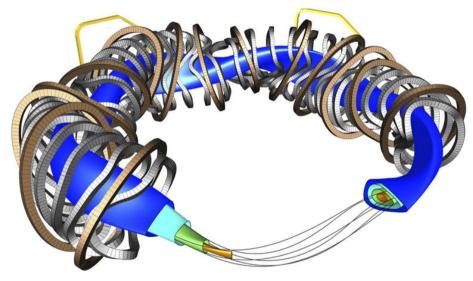


Attaining Tokamak level performance through plasma density profile shaping at Wendelstein 7-X

S. Bannmann, O. Ford, S.A. Bozhenkov, T. Stange, R. Lopez Cansino, A. Langenberg, M. Wappl, J. Brunner, G. Fuchert, T. Gonda, D. Hartmann, J. Knauer, H.P. Laqua, P. McNeely, N. Pablant, E. Pasch, P. Poloskei, K. Rahbarnia, N. Rust, F. Warmer, R.C. Wolf and the W7X-Team



This work has been carried out within the manework of the EUR/Outsion Consortium, funded by the European Union via the location of the European Programme (Grant Agreement No 1005/2200 — EUROSLION). I Week and opinions expressed are however those of the author(s) only and on the necessary reflect those of the European Union or the European Commission. Neither the European Union on the European Commission can be feld responsible for them.

FEC 2025

Optimized Stellarator Wendelstein 7-X

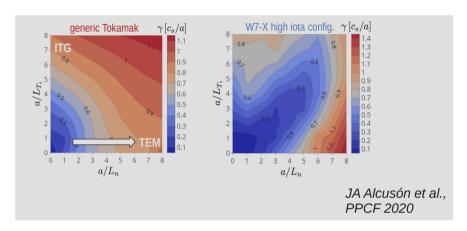
TS Pedersen et al.

Successfully optimized for reduced neoclassical transport

Heat transport now dominated by turbulence

Limits core ion temperature to ~1.5 keV in typical ECRH discharges

To maximize plasma performance in W7-X need to reduce turbulent heat transport!


Turbulent heat transport suppression at W7-X

Core density gradients: ITG suppression + TEM stabilty

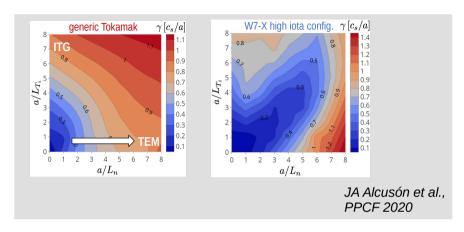
Determined by:

- Particle transport regime (diffusion/pinch)
- Core particle source actuators (NBI, pellets)

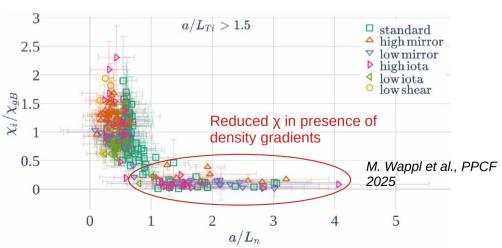
Reduced turbulent heat transport

Turbulent heat transport suppression at W7-X

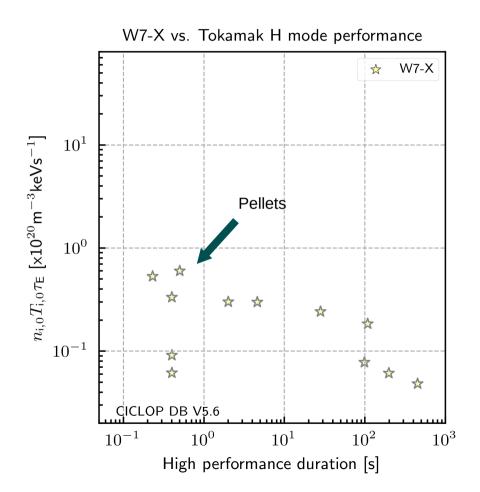
Core density gradients: ITG suppression + TEM stabilty

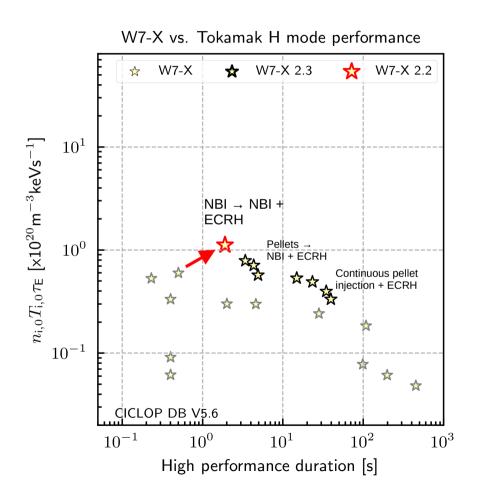


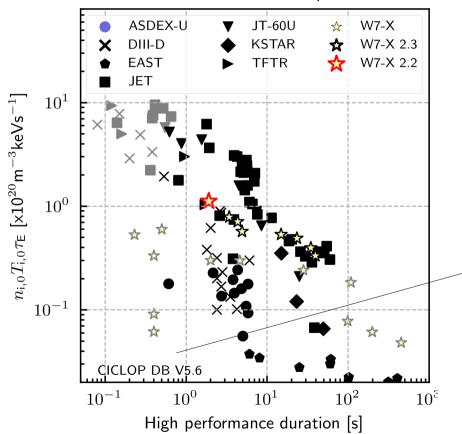
Determined by:


- Particle transport regime (diffusion/pinch)
- Core particle source actuators (NBI, pellets)

Reduced turbulent heat transport


Experimentally seen across magnetic configurations and discharge scenarios


Ion turbulent heat transport coefficient



New record triple product achieved at W7-X

$\overline{n_{i,0}T_{i,0} au_{ m E}}$	1.10	$\pm 0.07 \ 10^{20} \mathrm{m}^{-3} \mathrm{keVs}$	
$n_{i,0}T_{i,0} au_{ m E} ^{ m max}$	1.18	$\pm 0.12 \ 10^{20} \mathrm{m}^{-3} \mathrm{keVs}$	

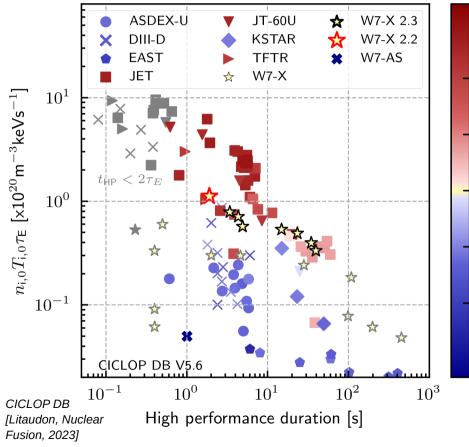
W7-X vs. Tokamak H mode performance

New record triple product achieved at W7-X

$\overline{n_{i,0}T_{i,0} au_{ m E}}$	1.10	$\pm 0.07 \ 10^{20} \mathrm{m}^{-3} \mathrm{keVs}$
$n_{i,0}T_{i,0}\tau_{\rm E} ^{\rm max}$	1.18	$\pm 0.12 \ 10^{20} \mathrm{m}^{-3} \mathrm{keVs}$

Tokamak DB CICLOP [X. Litaudon, Nuclear Fusion, 2023]: range of H-mode operation regimes, e.g. advanced regimes as non-inductive scenarios, negative shear or ITBs

→ Poster P4 X. Litaudon


4

1/2

1/4

Less stored magnetic energy than W7-X

 $E_B = V B_0^2 / 2\mu_0$

More stored magnetic New record triple product achieved at W7-X energy than W7-X

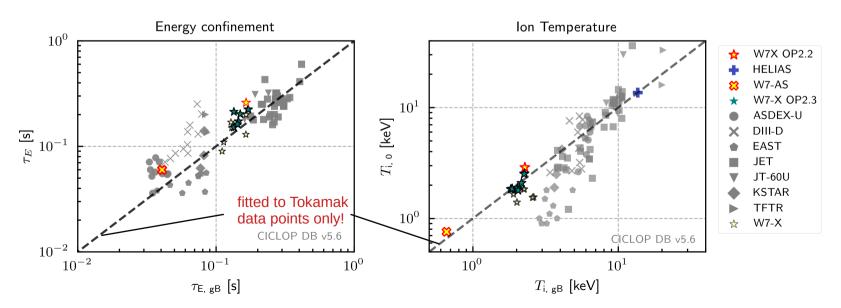
	1	
$\overline{n_{i,0}T_{i,0} au_{ m E}}$	$1.10 \pm 0.07 \ 10^{20} \mathrm{m}^{-3} \mathrm{keVs}$	
$n_{i,0}T_{i,0}\tau_{\rm E} ^{\rm max}$	$1.10 \pm 0.07 \ 10^{20} \text{m}^{-3} \text{keVs}$ $1.18 \pm 0.12 \ 10^{20} \text{m}^{-3} \text{keVs}$	

W7-X achieved competitive triple energy

product given its stored magnetic

Gyro-Bohm scaling of high confinement discharges

Gyro-Bohm scaling


$$\omega \tau_{E,gb} \propto (\rho^*)^{-3}$$

Definition from kinetic profiles and heating power

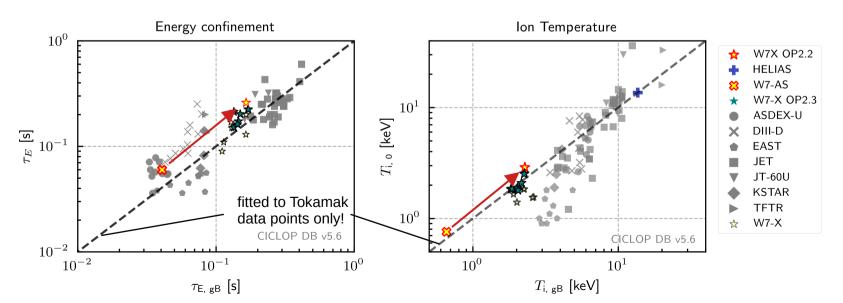
$$au_{\mathrm{E}} = \frac{W}{P_{\mathrm{H}}} = \frac{3nkT}{P_{\mathrm{H}}}$$

$$au_{E,gB} = c_2 a^3 \epsilon^{0.6} m^{-0.2} \Big(rac{P_{
m H}}{n}\Big)^{-0.6} B^{0.8}$$

$$T_{
m gB} = c_1 \epsilon^{-0.4} m^{-0.2} \left(rac{P_{
m H}}{n}
ight)^{0.4} B^{0.8}$$

Gyro-Bohm scaling of high confinement discharges

Gyro-Bohm scaling

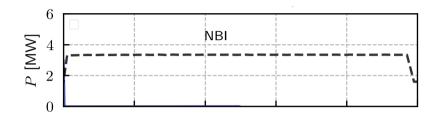

$$\omega \tau_{E,gb} \propto (\rho^*)^{-3}$$

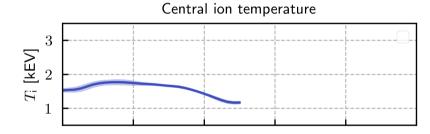
Definition from kinetic profiles and heating power

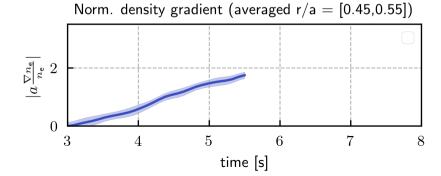
$$au_{\mathrm{E}} = \frac{W}{P_{\mathrm{H}}} = \frac{3nkT}{P_{\mathrm{H}}}$$

$$au_{E,gB} = c_2 a^3 \epsilon^{0.6} m^{-0.2} igg(rac{P_{
m H}}{n}igg)^{-0.6} B^{0.8}$$

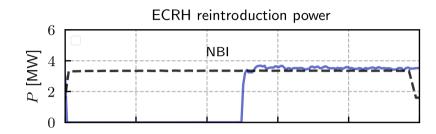
$$T_{\mathrm{gB}} = c_1 \epsilon^{-0.4} m^{-0.2} \left(\frac{P_{\mathrm{H}}}{n}\right)^{0.4} B^{0.8}$$

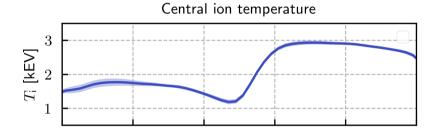


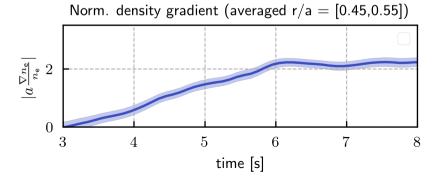

Achieved energy confinement time and ion temperature in line with Tokamak gyro-Bohm H mode scaling


W7-AS to W7-X (similar plasma regime): Follows the Tokamak fitted gyro-Bohm scaling

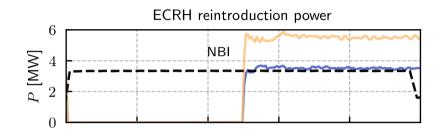
Accessing and stabilizing high performance plasmas

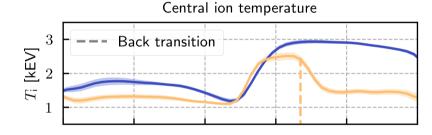


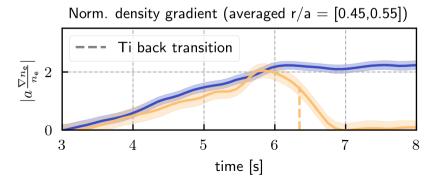



- I. Pure NBI heating:
 - a) core density gradient develops
 - b) low ion temperature due to low power

Accessing and stabilizing high performance plasmas



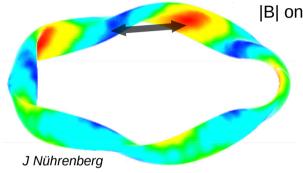



- I. Pure NBI heating:
 - a) core density gradient develops
 - b) low ion temperature due to low power
- II. Add ECRH:
 - a) Core ion temperature increases
 - b) Core density pump-out: stabilizes gradient

Accessing and stabilizing high performance plasmas

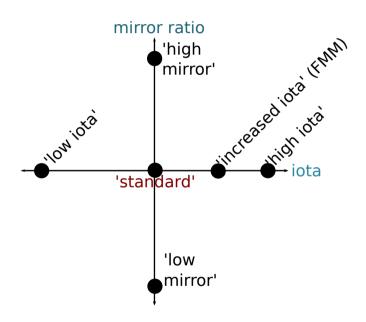
- I. Pure NBI heating:
 - a) core density gradient develops
 - b) low ion temperature due to low power
- II. Add ECRH:
 - a) Core ion temperature increases
 - b) Core density pump-out: stabilizes gradient

Adding too much ECRH: Core density gradient reduction until back transition to higher heat transport regime



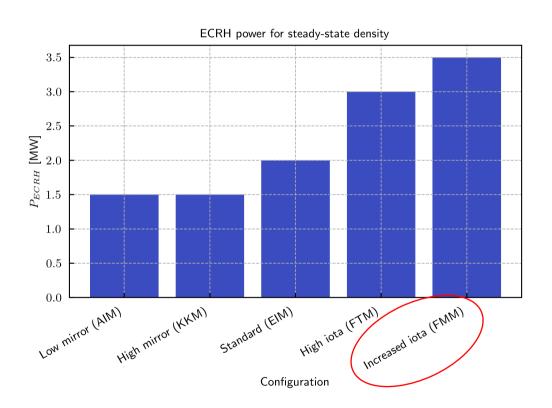
Need to find balance ECRH power!

Magnetic field configuration space Wendelstein 7-X


Mirror ratio

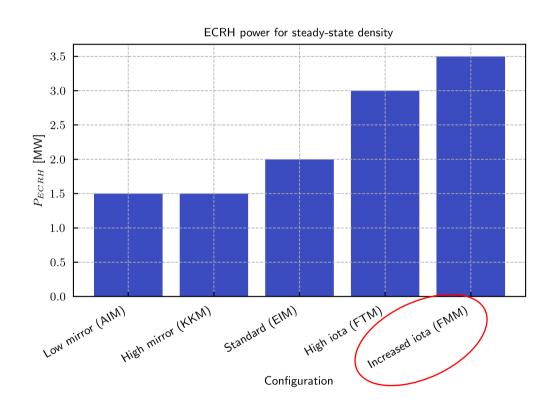
|B| on flux surface

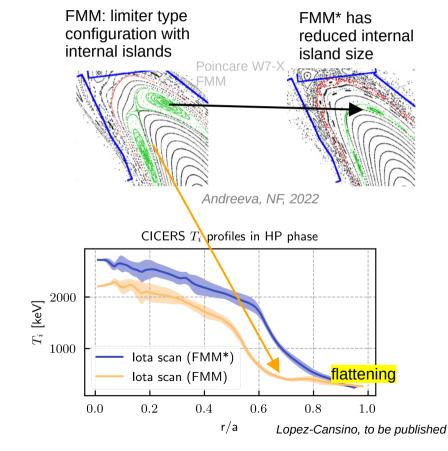
Adjustable via coil currents and additional control coils


lota

$$t = 1/q$$

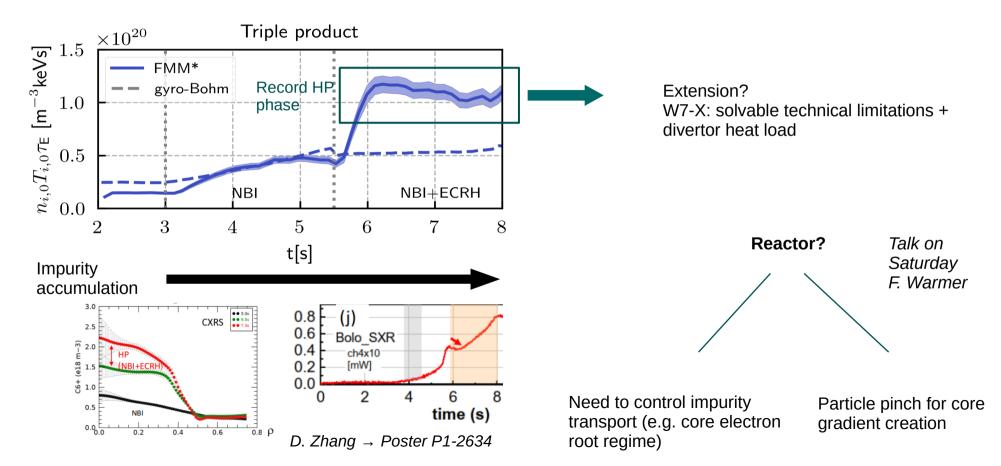
Configuration space





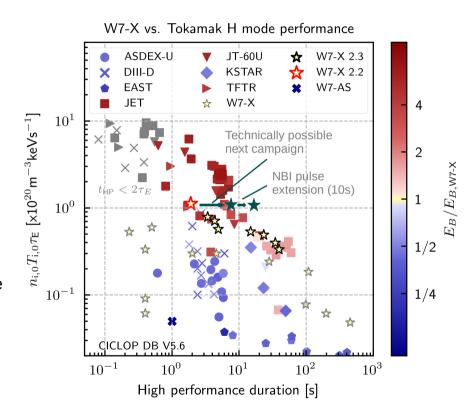
Best performance achieved in *iota scan* configuration

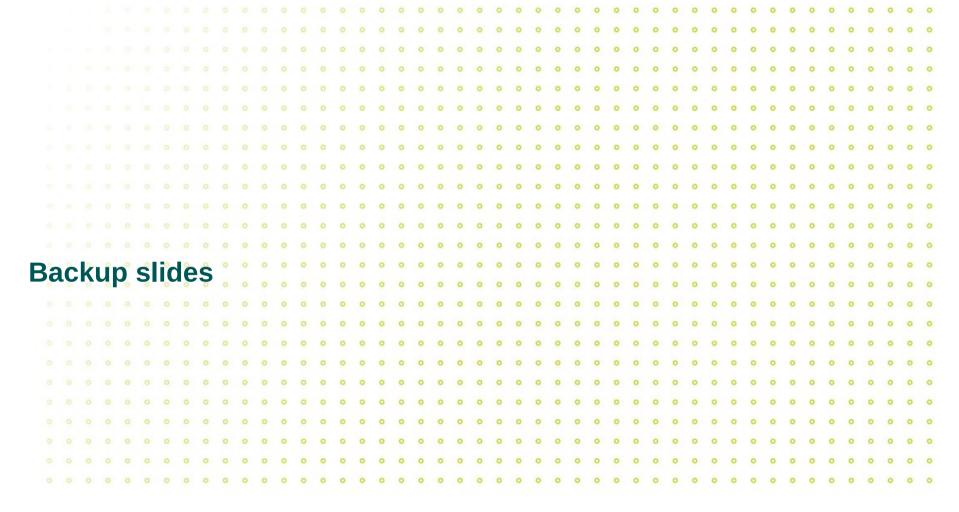
Accessing and stabilizing high performance plasmas – different magnetic configurations



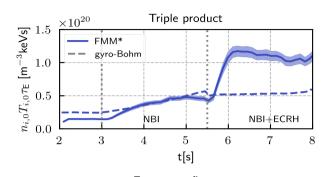
Best performance achieved in *iota scan* configuration

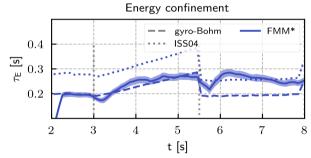
Time evolution of plasma performance in FMM*

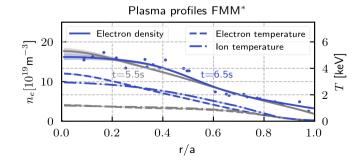




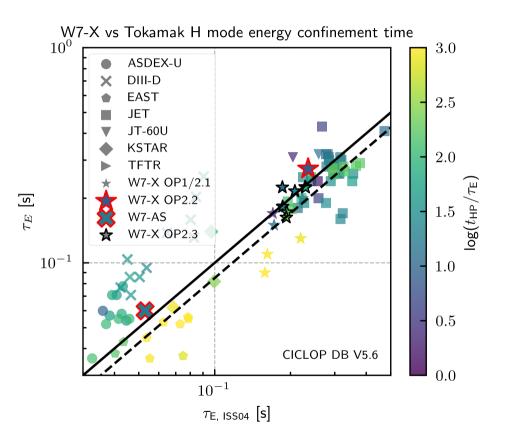
Conclusion

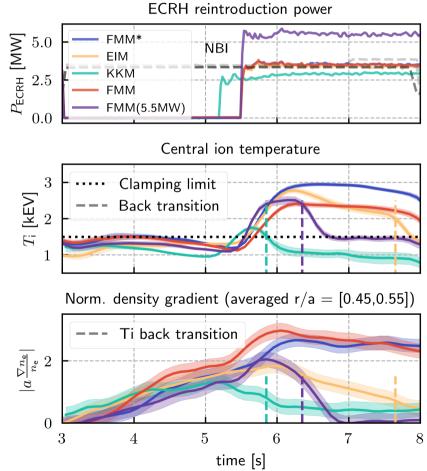

- In W7-X unprecedented Stellarator performance in terms of the triple product was achieved
- Performance on par with Tokamak H-mode regimes given the stored magnetic energy of W7-X
- Comparing to a similar high confinement discharge scenario from W7-AS good agreement with reactor favorable gyro-Bohm scaling was found
- Stability of the core gradient achieved with combined NBI+ECR heating
- ECRH power for steady-state peaked density profiles found to be magnetic configuration dependent
- Extension of HP phase in W7-X or scaling to reactor: Critical Impurity accumulation in HP phase





Time evolution of plasma performance in FMM




Energy confinement time scaling: ISS04

Gyro-Bohm scaling

$$\omega \tau_{E,gb} \propto (\rho^*)^{-3}$$

$$\omega = \frac{qB}{2\pi m}$$

$$\rho^* = \frac{\rho_L}{a} = \frac{mv_\perp}{a \cdot qB} = \frac{(2kTm)^{\frac{1}{2}}}{a \cdot qB}$$

$$v_\perp = \frac{2}{3}v_{\text{th}}$$

$$\tau_{E,gb} \propto \frac{1}{\omega} (\frac{(2kTm)^{\frac{1}{2}}}{a \cdot qB})^{-3} \propto m^{-\frac{1}{2}}T^{-\frac{3}{2}}a^3q^2B^2$$

Combining with the definition of $\tau_{\rm E}$ via the kinetic profiles and heating power

$$\tau_{\rm E} = \frac{W}{P_{\rm H}} = \frac{3nkT}{P_{\rm H}} \tag{8}$$

gyro-Bohm scalings for T and $\tau_{\rm E}$ can be written in terms of geometric quantities, density n and heating power $P_{\rm H}$:

$$T_{\rm gB} = c_1 \kappa^{-0.4} m^{-0.2} \left(\frac{P_{\rm H}}{n}\right)^{0.4} B^{0.8}$$
 (9)

$$\tau_{E,gB} = c_2 a^3 \kappa^{0.6} m^{-0.2} \left(\frac{P_{\rm H}}{n}\right)^{-0.6} B^{0.8}$$
(10)

Consequently, if gyro-Bohm scaling holds the triple product F scales as:

$$F \propto a^3 \kappa^{0.2} m^{-0.4} n^{1.2} P_{\rm H}^{-0.2} B^{1.6}$$
 (11)

Discharge IDs – magnetic configurations

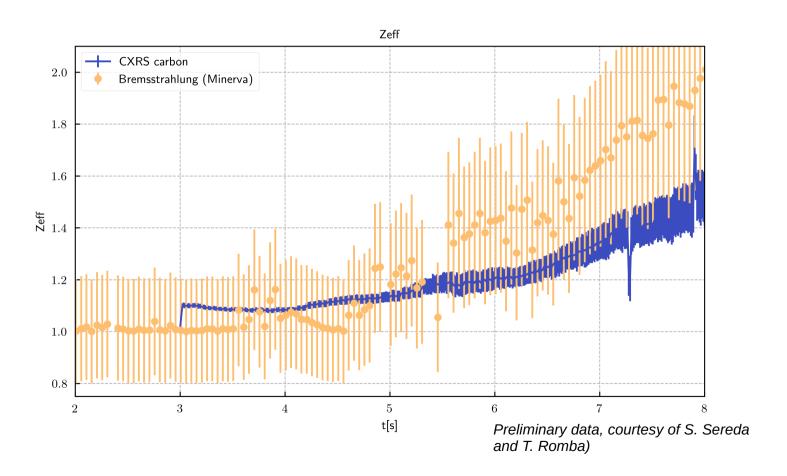
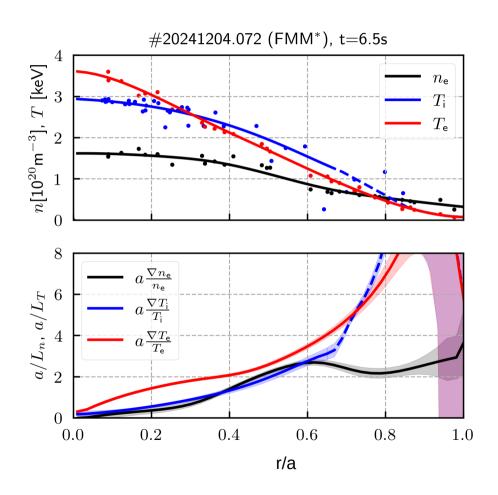
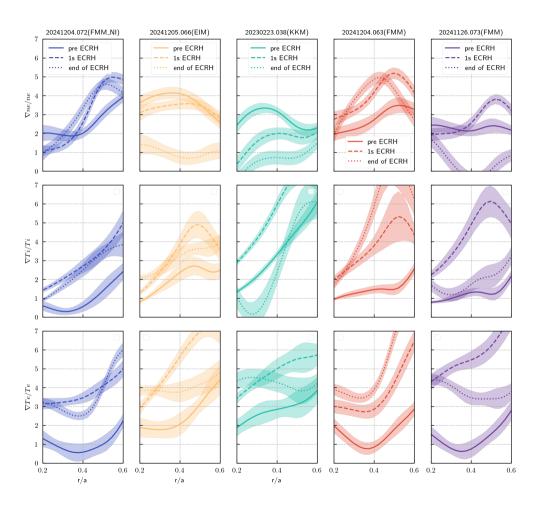


TABLE II. Experimentally determined ECRH pump-out balance for two NBI sources (3.5MW) in several magnetic configurations and the best achieved core plasma parameters. Note that a final optimisation of T_i , W_{dia} and τ_E was completed only for Standard (EIM) and iota scan (FMM) configurations.

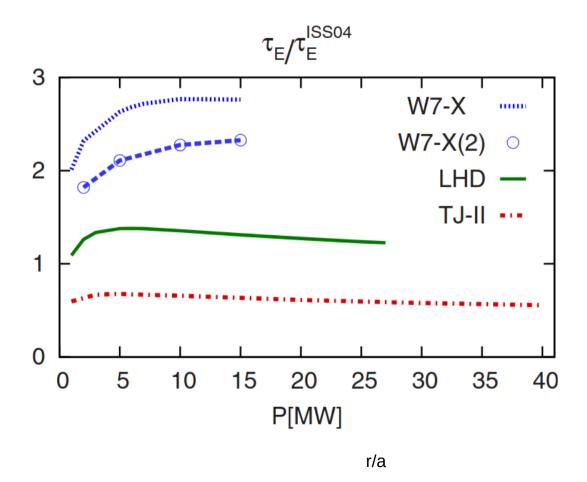
Configuration	$\iota_{2/3}$	$\epsilon_{ ext{eff},1/2}$	a [m]	P_{ECRH} steady [MW]	$T_i [\mathrm{keV}]$	W_{dia} [MJ]	$\tau_E \; [\mathrm{ms}]$	Program ID
Low mirror (AIM)	0.97	0.018	0.53	1.5	1.6	0.8	180	20230316.069
High mirror (KKM)	0.97	0.022	0.51	1.5	1.6	0.8	180	20250227.082
Standard (EIM)	0.97	0.0065	0.52	2.0	2.6	1.2	180	20241205.066
High iota (FTM)	1.20	0.013	0.48	3.0	2.1	1.2	150	20241022.039
Iota scan, limiter with	1.08	0.008	0.55	3.5	2.3	1.2	170	20241204.063
internal islands (FMM)								
Iota scan, limiter with	1.08	0.008	0.55	3.5	2.9	1.8	260	20241204.072
suppressed islands (FMM*)								


Zeff record iota scan shot (#20241204.072)


Plasma profiles in HP phase

Plasma profiles in different magnetic configurations

fren record shot


TABLE I. Energy confinement time and triple product in high performance phase of discharge #20241204.072.

Parameter	Value	Error	Unit	$f_{ m ren}$
$\overline{ au_{ m E}}$	260	± 15	ms	1.14
$ au_{ m E}^{ m max}$	286	± 19	${ m ms}$	1.25
$ au_{ m E,~ISS04}$	227	± 12	${ m ms}$	1.0
$\overline{n_{i,0}T_{i,0} au_{ m E}}$	1.10	± 0.07	$10^{20}\mathrm{m}^{-3}\mathrm{keVs}$	
$n_{i,0}T_{i,0} au_{ m E} ^{ m max}$	1.18	± 0.12	$10^{20}\mathrm{m}^{-3}\mathrm{keVs}$	

r/a

Neoclassical limit W7-X

