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Optimized Stellarator Wendelstein 7-X

Successfully optimized for reduced neoclassical transport

Heat transport now dominated by turbulence

To maximize plasma performance in W7-X need to 
reduce turbulent heat transport!

Pedersen 

Limits core ion  
temperature to ~1.5 keV 
in typical ECRH 
discharges
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Turbulent heat transport suppression at W7-X

Core density gradients: ITG suppression + TEM stabilty

Alcusón

Reduced turbulent heat transport

Determined by:
● Particle transport regime (diffusion/pinch)
●  Core particle source actuators (NBI, 

pellets)

generic Tokamak

ITG

TEM

W7-X high iota config.
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Turbulent heat transport suppression at W7-X

Core density gradients: ITG suppression + TEM stabilty

Alcusón

Reduced turbulent heat transport

Determined by:
● Particle transport regime (diffusion/pinch)
●  Core particle source actuators (NBI, 

pellets)

Ion turbulent heat transport coefficient

Wappl, PPCF 2025Experimentally seen across magnetic configurations 
and discharge scenarios

Reduced χ in presence of 
density gradients

generic Tokamak

ITG

TEM

W7-X high iota config.
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Triple product W7-X

Pellets
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Triple product W7-X

Continuous pellet 
injection + ECRH

Pellets → 
NBI + ECRH

NBI → NBI + 
ECRH

New record triple product 
achieved at W7-X
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Triple product W7-X

New record triple product achieved at W7-X

● Tokamak DB CICLOP [Litaudon, 
Nuclear Fusion, 2023]: range of H-
mode operation regimes, e.g. 
advanced regimes as non-inductive 
scenarios, negative shear or ITBs
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Triple product W7-X

New record triple product achieved at W7-XMore stored magnetic 
energy than W7-X

Less stored magnetic 
energy than W7-X

W7-X achieved competitive triple 
product given its stored magnetic 
energy 

CICLOP DB 
[Litaudon, Nuclear 
Fusion, 2023]
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Gyro-Bohm scaling of high confinement discharges

Gyro-Bohm scaling Definition from kinetic profiles and 
heating power Achieved energy confinement 

time and ion temperature in 
line with Tokamak gyro-Bohm 
H mode scaling

fitted to Tokamak 
data points only!
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Gyro-Bohm scaling of high confinement discharges

Gyro-Bohm scaling Definition from kinetic profiles and 
heating power

Achieved energy 
confinement time and 
ion temperature in line 
with Tokamak gyro-
Bohm H mode scaling

W7-AS to W7-X (similar 
plasma regime): Follows 
the Tokamak fitted gyro-
Bohm scaling

fitted to Tokamak 
data points only!
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Accessing and stabilizing high performance plasmas

I. Pure NBI heating: 
a) core density gradient develops
b) low ion temperature due to low power
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Accessing and stabilizing high performance plasmas

I. Pure NBI heating: 
a) core density gradient develops
b) low ion temperature due to low power

II. Add ECRH: 
a) Core ion temperature increases
b) Core density pump-out: stabilizes gradient
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Accessing and stabilizing high performance plasmas

I. Pure NBI heating: 
a) core density gradient develops
b) low ion temperature due to low power

II. Add ECRH: 
a) Core ion temperature increases
b) Core density pump-out: stabilizes gradient

Adding too much ECRH: Core density gradient 
reduction until back transition to higher heat 
transport regime

Need to find balance 
ECRH power!
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Magnetic field configuration space Wendelstein 7-X

J Nührenberg

Mirror ratio

Iota

Configuration space

Adjustable via coil currents and 
additional control coils

|B| on flux surface
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Accessing and stabilizing high performance plasmas – 
different magnetic configurations

Best performance achieved in iota scan configuration

FMM: limiter type 
configuration with 
internal islands 

Andreeva, NF, 2022

Poincare W7-X 
FMM

FMM* has 
reduced internal 
island size

Lopez-Cansino, to be published

flattening



 M A X- P L A N C K - I N ST I T U T E  F O R  P L AS M A P H Y S I C S  |  S EB A ST I AN  B AN N M AN N 1 6

Time evolution of plasma performance in FMM*

Record HP 
phase

Reactor? 

Extension? 
W7-X: solvable technical limitations + 
divertor heat load

Particle pinch for core 
gradient creation

Need to control impurity 
transport (e.g. core electron 
root regime)

Impurity 
accumulation

D. Zhang → Poster P1-2634
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Conclusion

● In W7-X unprecedented Stellarator performance in terms of 
the triple product and was achieved

● Performance on par with Tokamak H-mode regimes given the 
stored magnetic energy of W7-X

● Comparing to a similar high confinement discharge scenario 
from W7-AS good agreement with reactor favorable gyro-
Bohm scaling was found

● Stability of the core gradient achieved with combined 
NBI+ECR heating

● ECRH power for steady-state peaked density profiles found to be 
magnetic configuration dependent

● Extension of HP phase in W7-X or scaling to reactor: Critical 
Impurity accumulation in HP phase

Technically possible 
next campaign

NBI pulse 
extension (10s)
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Backup slides
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Time evolution of plasma performance in FMM
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Time evolution of plasma profiles in different magnetic 
configurations
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Gyro-Bohm scaling
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Discharge IDs – magnetic configurations
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Zeff record iota scan shot (#20241204.072)

Preliminary data, courtesy of S. Sereda 
and T. Romba)
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Plasma profiles in HP phase

r/a
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Plasma profiles in different magnetic configurations

r/a
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fren record shot

r/a
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Neoclassical limit W7-X

r/a
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