

30th IAEA Fusion Energy Conference, 13-18th of Oct. 2025

High-performance ELM-free semi-detached scenario sustained at high-current in JET DTE3

Carine Giroud on behalf of the JET-ITER Baseline Team

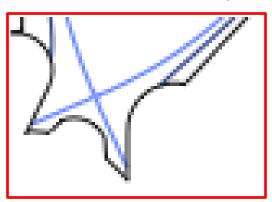
Eurofusion Consortium and UKAEA, Culham Campus, Abingdon OX14 3QB

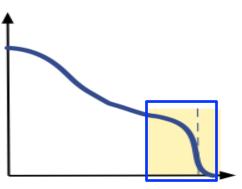
Co-authors

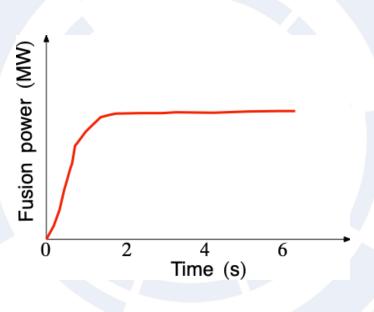
D.B. King¹, I.S. Carvalho², D. L. Keeling¹, L. Frassinetti³, R. A. Pitts², G. Pucella⁴, S. Wiesen⁵, A. Kappatou⁶, N. Vianello⁻,¹¹⁶, M. Wischmeier⁶, F. Rimini¹, M. Baruzzo⁴,⁻, M. Maslov¹, M. Sos³, X. Litaudonゥ, R. B. Henriques¹, K. Kirov¹, C. Perez von Thun¹⁰, H. J. Sun¹, P. Dumortier¹¹, E. Lerche¹¹, P. Jacquet¹, M. Lennholm¹, J. Mitchell¹, A. Parrott¹, J. Bernardo¹, M. Zerbini⁴, I. Coffey¹,¹², K. Collie¹, J. M.Fontdecaba¹³, N. Hawkes¹, Z. Huang¹, I. Jepu¹, D. Kos¹, K. Lawson¹, E. Litherland-Smith¹, A. Meigs¹, C. Olde¹, A. Patel¹, L. Piron⁻,¹⁴, M. P. Poradzinski¹¹¹⁰, F. Eriksson¹, Z. Stancar¹, D. Taylor¹, E. Alessi¹⁶, I. Balboa¹, A. Boboc¹, S. Bakes¹, M. Brix¹, E. De la Cal¹³, P. Carvalho¹, A. Chomiczewska¹⁰, J. Eriksson¹⁵, Z. Ghani¹, E. Giovannozzi⁴, J. Foster¹, A. Huber¹⁻, J. Karhunen¹⁶, E. Kowalska-Strzeciwilk¹⁰, K. Lawson¹, J. Maddock¹, J. Matthews¹, S. Menmuir¹, K. Mikszuta-Michalik¹⁰, R. B. Morales-Bianchetti¹, D. Moulton¹, M. Nocente¹ゥ, E. Pawelec²⁰, E. Pinto¹³, D. Refy²¹, P. Ryan¹, I. Voldiner¹³, G. Sergienko¹⁻, S. Silburn¹, G. Stankunas²², C. Silva²³, J. Svodoba⁶, G. Szepesi¹, M.Tomes⁶, B. Thomas¹, A. Tookey¹, Y. Zayachuk¹, N. Wendler¹⁰, L. Xiang¹, F. Auriemma⁻,¹ſ, I. Borodkina⁶, D. Fajardo⁶, A. Fil⁶, S. Gabriellini¹, L. Garzotti¹, S. Henderson¹, Q. Hu¹ſ,¹⁰, P. Innocente⁻, I. Ivanova-Stanik¹⁰, A. Jarvinen¹⁶, W. Parail¹, I. Predebon⁻,¹ſ, S. Saarelma¹, J. Seidl⁶, E.R. Solano¹³, A. Stagni⁻, A. Thrysoe²⁻, M. Valovic¹, A. Widdowson¹, V.K. Zotta²⁴, JET Contributors* and the EUROfusion Tokamak Exploitation Team**.

Achieving an integrated scenario for ITER and future PP is complex

ITER operation at high fusion gain Q_{DT}=10 for 300-500s, 15MA, P_{SOL}≈100MW


EXPECTATION


high divertor radiation cools pedestal


Detrimental cost to the

energy confinement

and fusion power

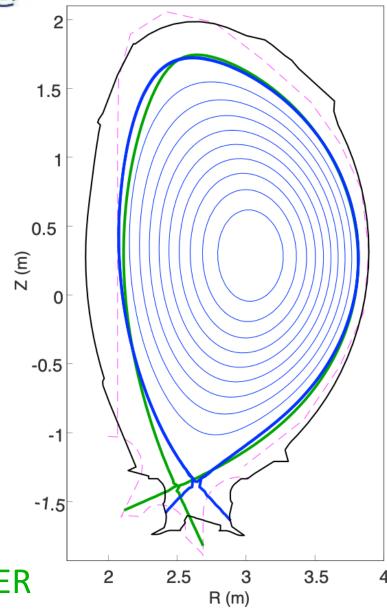
OPTIMUM

seed impurity would increase the divertor radiation

increase the pedestal pressure and temperature

Increase of confinement and fusion power

small ELM or no ELM plasma desirable to minimize high-Z impurity source and achieve stationary conditions



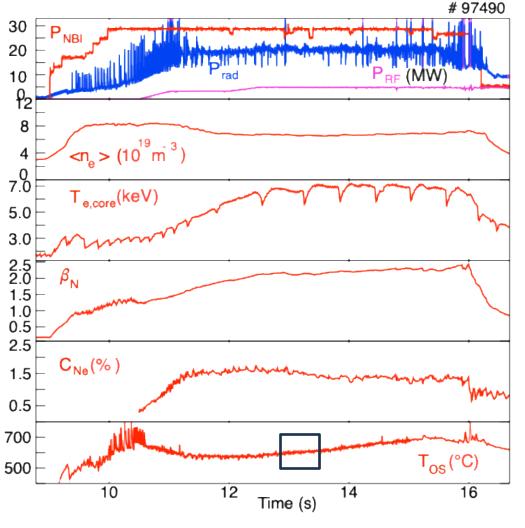
- Neon-Seeded JET-ITER Baseline: Advancing Core-Edge integration for ITER
- Exploring Plasma Response and Operational Space with Neon Seeding Near the L-H Power Threshold
- Identifying the Underlying Physics Driving Performance

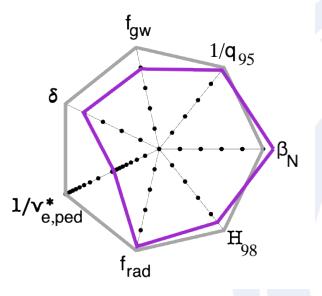
The JET ITER baseline scenario

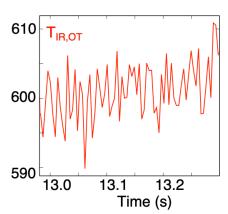
High-triangularity δ_{av} = 0.35-0.38 Divertor configuration closer to ITER divertor Partial detachment with extrinsic impurity (Ne)

Investigate core-edge-SOL integration

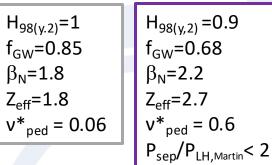
Exhaust (imp), Pedestal, Confinement, Stationarity

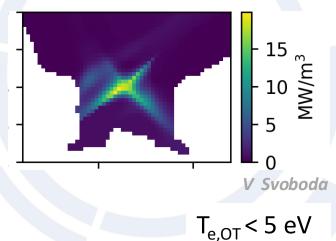

2.5MA to 3.2MA: q_{95} =2.7-3.3 High power P_{nbi} =28-32MW P_{rf} =5MW D-D and D-T


No detachment control scheme applied



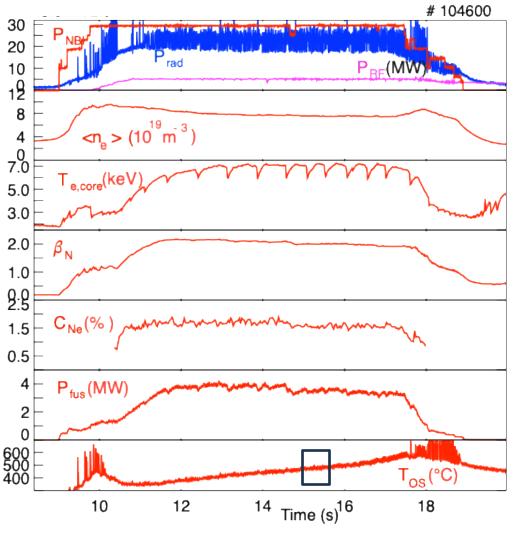
First demonstration of integrated ELM-free high-performance Neon-seeded plasma at JET

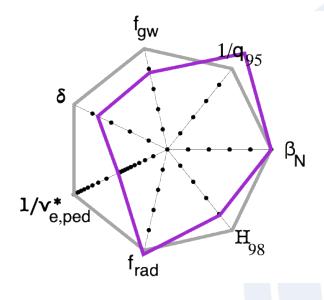

D-D operation 2.5MA/2.7T

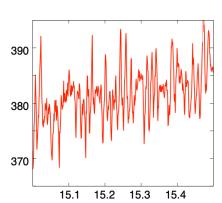


ITER

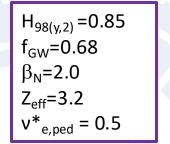
#97490

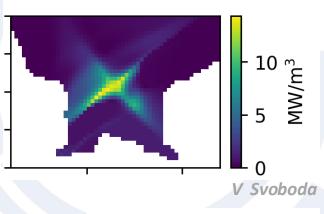

Transfer from D to D-T was straightforward.


F_{rad} corrected to achieve energy balance

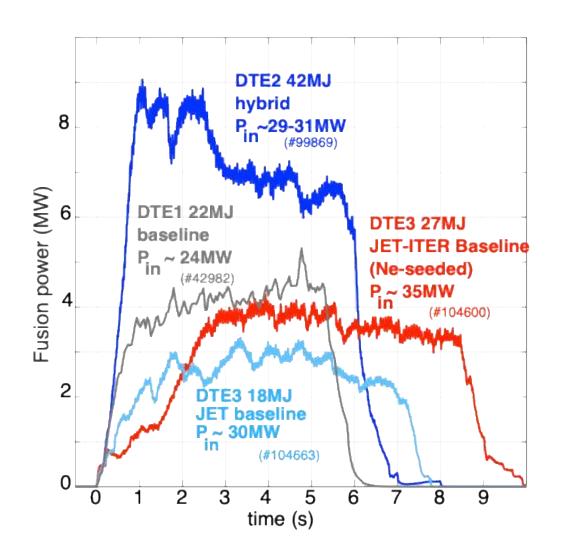


Successfully achieved in D-T at 3MA


D-T operation 3.0MA/2.9T



#104600

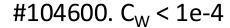

 $T_{e,OT}$ < 5 eV

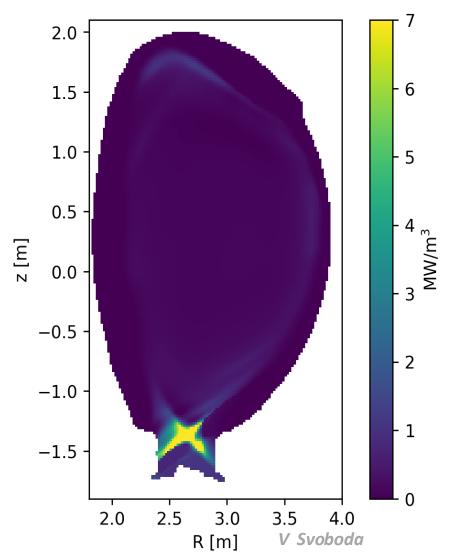
Best performance DT-seeded plasmas and achieved very long pulse (7.4s NBI at 30MW) $P_{fus} = 4MW$

Stationary 3MA Ne-seeded plasma reaches P_{fusion} = 4MW

- Stationary plasma with fusion energy 27MJ (DTE1 22MJ)
- No time allocated to improve performance
- D-NBI beam led to D-T mix $n_T/(n_D+n_T) < 0.5$
- about 1/3 of neutron rate from thermal reaction

*Lombardo J. Nucl. Fusion 65 (2025) 096009


F.Auriemma, V. Zotta, S. Gabriellini,


M. Poradzinski, J. Eriksson, M. Nocente

W content remains low in ELM-free JET-ITER baseline plasmas

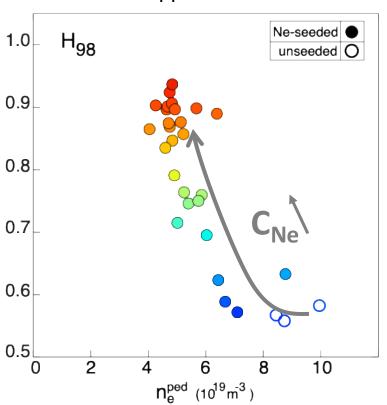
- Ne impurities dominate W sputtering in D-D and D-T operation
- No W screening in pedestal.

D. Fajardo et al TH/8 EX/9

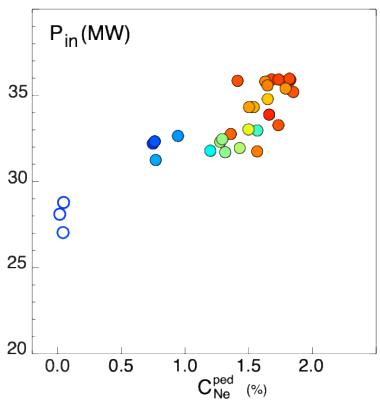
Indication of excellent divertor screening due to main ion flow: first ER02.0 results

H. Kumpulainen et al TH/8 EX/9

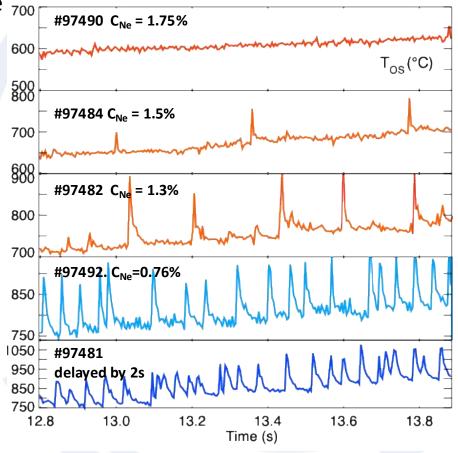
- Neon-Seeded JET-ITER Baseline: Advancing Core-Edge integration for ITER
- Exploring Plasma Response and Operational Space with Neon Seeding Near the L-H Power Threshold
- Identifying the Underlying Physics Driving Performance



Confinement improves as Neon increased and n_{e,ped} decreases



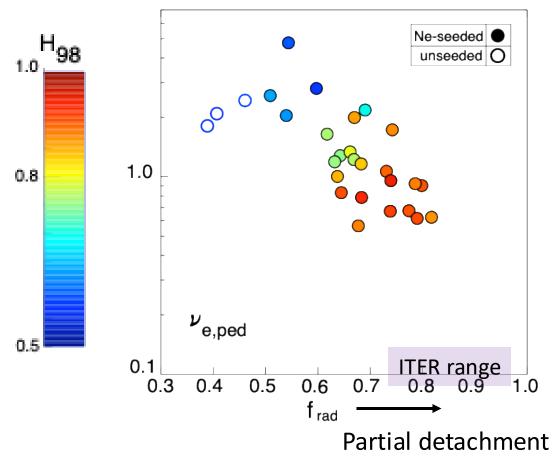
2.5MA $\Gamma_{\rm D}$ =3.5-4.5x10²² el.s⁻¹

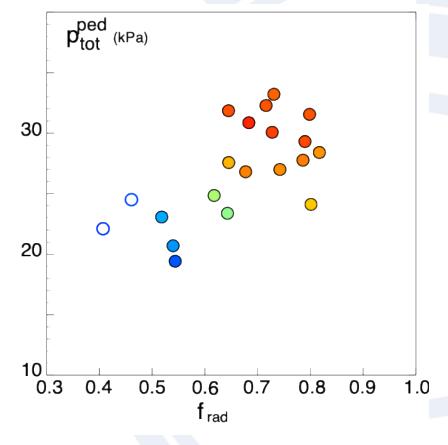

Same trend applies for neutron rate

Color of symbol related to H98 value 700

Reduction of ELMs as C_{Ne} increases

High performance plasmas are at high neon concentration ($C_{Ne} > 1.3\%$) and high power

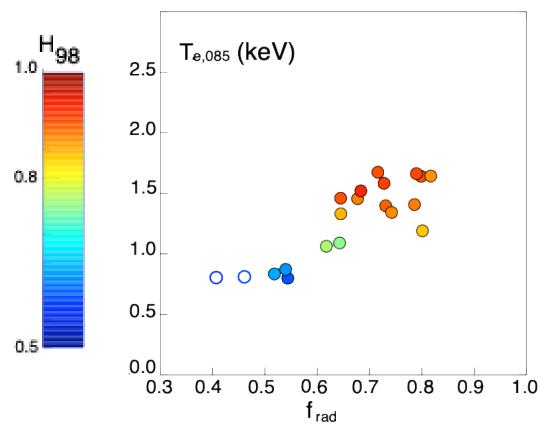


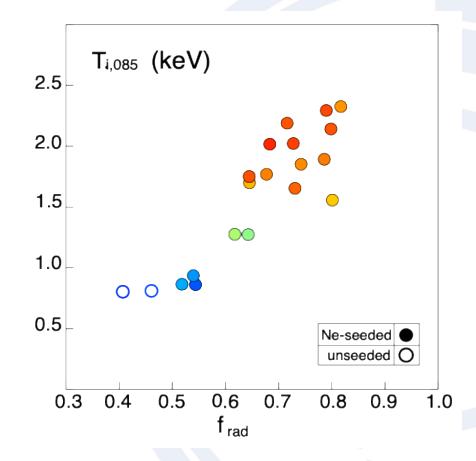

High-confinement correlates with pedestal pressure increase

2.5MA $\Gamma_{\rm D}\text{=}3.5\text{-}4.5\text{x}10^{22}~el.s^{\text{-}1}$

Core density peaking insufficient, confinement improvement stems from increased pedestal pressure

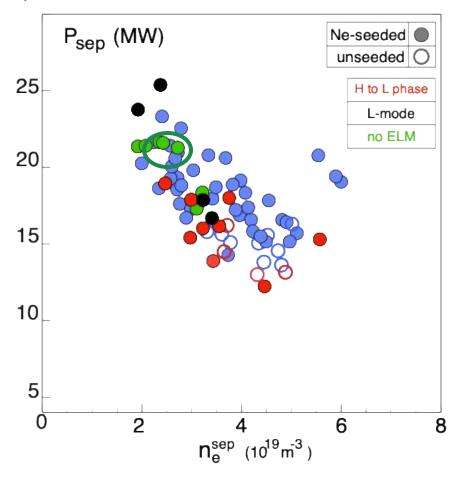
Supported by JINTRAC core integrated modelling with QualikiZ and TGLF

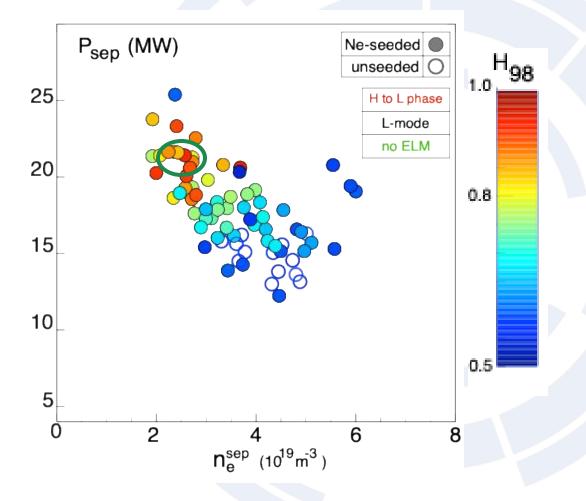

C. Leoni, V. Zotta, Q. Hu, M. Marin



Pedestal pressure increases due to plasma temperature

2.5MA $\Gamma_{\rm D}$ =3.5-4.5x 10^{22} el.s $^{-1}$


Increase of pedestal T_i/T_e from 1 to 1.5 as C_{Ne} increased Pedestal pressure widens and pedestal density gradient lowers



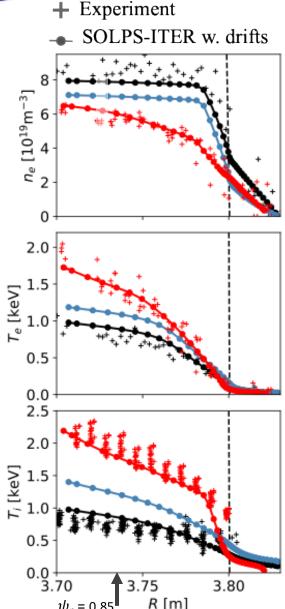
Access to ELM-free high-performance regime

2.5MA all gas-rate ($\Gamma_{\rm D}$ =1.5-6.0 x10²² el.s⁻¹) D-D operation

Access to ELM-free high-performance regime P_{sep}/P_{LH} ≥1.25

2.5MA all gas-rate ($\Gamma_{\rm D}$ =1.5-6.0 x10²² el.s⁻¹) D-D operation

- From unseeded, P_{sep} needs to be high enough to avoid hard H to L-transition
- No-ELM domain exists at low $n_{e,sep} = 2-3 \times 10^{19} \text{ m}^{-3}$
- No-ELM domain at high confinement is at:
 - low $n_{e.sep} = 2 2.5 \times 10^{19} \text{ m}^{-3}$
 - $P_{sep}/P_{LH} \ge 1.25$ (high C_{Ne} and enough power)
- 20% reduction in P_{LH} threshold in D-T opens access to high-performance 3MA plasmas


Outline of the talk

- Neon-Seeded JET-ITER Baseline: Advancing Core-Edge integration for ITER
- Exploring Plasma Response and Operational Space with Neon Seeding Near the L-H Power Threshold
- Identifying the Underlying Physics Driving Performance
 - What mechanisms reduce the ELM size ?
 - Why does the density decrease with neon seeding?
 - How can we achieve density control without ELM ?

Is the decrease of n_{e,sep} & n_{e,ped} with Neon due to SOL and divertor?

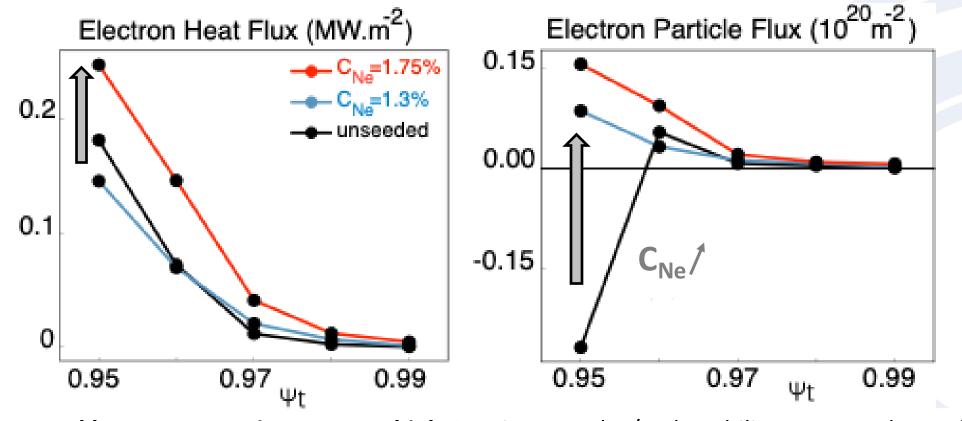
Case 1: unseeded

Case 2 : $C_{Ne} = 1.6 \%$

Case 3: Transport of unseeded + Γ_{ne} (as in case 2)

From unseeded, with no change of transport assumption in divertor, SOL or pedestal, adding $\Gamma_{\rm Ne}$ as in exp:

- $n_{e,sep}$ drop from **3.8** to 2.6x10¹⁹ m⁻³ as in exp. (drop S_0)
- $n_{e,ped}$ drops by 10% instead of a 30% seen exp.
- \rightarrow Pedestal transport must change (in addition to $n_{e,sep}$) to account for $n_{e,ped}$ decrease

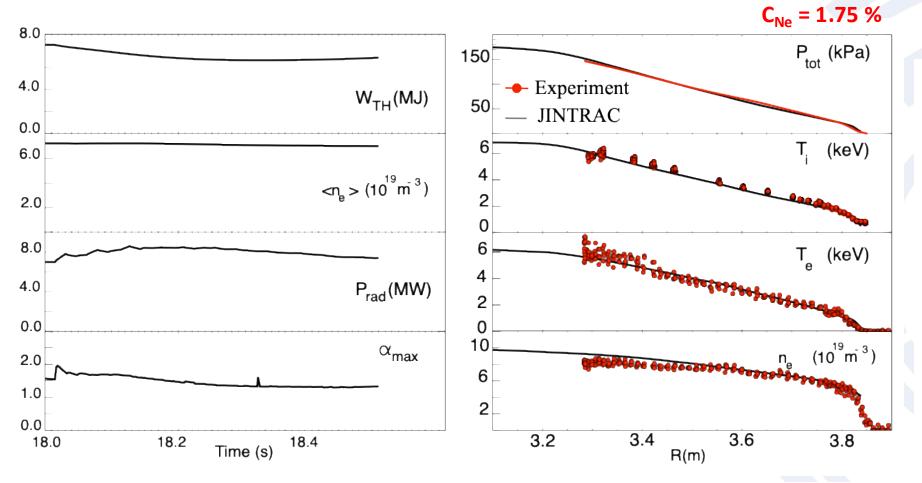

Similar results from SOLEDGE, EDGE2D-EIRENE

O Pan, P. Innocente, A. Jarvinen

ETG turbulent transport dominant in Ne-seeded pedestal, with particle flux reversal from unseeded to Ne-seeded

(GENE, local, with 3 particle species)

- Total heat transport increases at high C_{Ne} : increased T_i/T_e destabilises ETG modes and stabilises ITG modes
- Possible particle flux reversal from unseeded to seeded: low T_i/T_e at low seeding
 - inward particle flux at the pedestal top due to low wavenumber turbulence
 - compatible with higher pedestal density


Local and global simulations in process to quantify the latter point

I. Predebon, A. Mariani, M. Marin, M. Dicorato

Integrated modeling used to test understanding of key experimental results : profile and time evolution

JINTRAC-COCONUT

- Standard EDGE2D-EIRENE settings
- QuaLiKiZ for

 anomalous transport
 core and pedestal

 (ETG transport coeff ~
 GENE)

- Stationary conditions can be obtained with wider pedestal (as in exp.)
- Compatible with ELM-free conditions and high performance

Conclusion

- Stationary, ELM-free, high-performance neon-seeded plasma achieved at 3MA in D-T, near the L-H power threshold with partially detached divertor conditions (f_{GW} =0.68, β_{N} =2.0, $v^*_{e,ped}$ = 0.5, $T_{i,ped}$ =2keV, P_{fusion} =4MW, P_{in} =35MW).
- Access conditions identified at $n_{e,sep}$ about $2x10^{19}$ m⁻³, $P_{sep}/P_{LH} \ge 1.25$ as seen at medium and high current, in D-D and D-T operation.
- Adding Neon:
 - Improves the plasma performance via primarily an improved pedestal
 - Reduces the separatrix and pedestal density, via modified pedestal transport, possibly linked to a particle flux reversal.
- Unique scenario fulfilling major ITER requirements underlying physics must be disentangled to enable reliable extrapolation to ITER operation.

Contributions at IAEA on JET-ITER baseline

Day	Session	Name	Title
Wednesday @ 14:00	3141 Poster 2	H.J Sun	Impact of the Plasma Boundary on Machine Operation, and the Risk Mitigation Strategy on JET
Friday @16:10	2857 Oral	D. Fajardo	Theory-based integrated modelling of tungsten transport: validation in present-day tokamaks and predictions for ITER
Saturday @08:30	3486 Poster 7	D. Fajardo	Theory-based integrated modelling of tungsten transport: validation in present-day tokamaks and predictions for ITER
Friday @16:50	2761 Oral	H. Kumpulainen	Simulation of tungsten erosion and edge-to-core transport in neon-seeded JET plasmas
Saturday @08:30	3485 Poster 7	H. Kumpulainen	Simulation of tungsten erosion and edge-to-core transport in neon-seeded JET plasmas

JET-ITER baseline contributions so far

Person conference		Title
C. Giroud	PSI 2024	High-current Neon-seeded ITER baseline scenario in JET D and D-T
I. Carvalho	EPS 2024	Neon-seeded ITER baseline scenario experiments in JET D and D-T plasmas
E. Alessi	EPS 2025	Impact of light impurities injection on n=1 core MHD activity at JET
C. Leoni	EPS 2025	Effect of neon seeding on density profiles and particle sources in the Integrated scenario at the Joint European Torus
V. Zotta	EPS 2025	The ITER baseline scenario on JET in D-T with Neon seeding
E. Litherland- Smith	EPS 2025	High and medium Z impurity concentration determination with InDiCA in JET
M. Marin	TTF 2025	Modelling impurity-seeded plasmas at JET
I. Ivanova-Stanick	Plasma 2025	Integrated numerical analysis of the neon seeded JET-ITER baseline scenario in deuterium plasmas