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Aims of the research topic 

3

• Develop understanding of physics of ELM free 
scenarios


• Integration of all regions of plasma (core, 
pedestal, SOL, divertor) challenging


• Understand physics of regimes -> extrapolate

• Utilise smaller, flexible devices to understand 

physics mechanisms

• Demonstrate this understanding on larger 

machines (notably JET)

• Extrapolate to JT-60SA, SPARC, ITER..


• Regimes of interest:

• MP ELM-suppression

• QH-mode

• EDA/QCE

• NT

• I-mode

JET
AUG

TCV ITER
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ELM avoidance; a simple picture

• ELM occurs due to intersection of “average” 
transport and global MHD


• Can avoid this intersection via:

• Increasing ELM stability limit via shaping


• With increased transport: remain below 
threshold for large-scale MHD


• Separatrix localised ballooning: 

• Hypothesis behind QCE 


• Decreasing both limits until H-mode avoided

• Unstable ballooning in the pedestal 

middle, blocking second stability access:

• Negative triangularity
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Ballooning stability in the pedestal middle: negative triangularity

• Present understanding: 

• Sufficient negative delta to block access to 

ballooning second stability1,2

• Approach of experiments:


• Use ideal MHD to predict critical shaping, 
combined with what a particular device can 
achieve (limited at AUG and JET)


• Use flexible shaping at TCV to verify 
predictions


• Attempt experiments on larger devices

5

Figure courtesy A.O. Nelson
1Nelson et al., PRL 2023

2Sauter et al., IAEA 2023
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Exploring possible NT shapes for AUG and JET

• Initial attempts on AUG: 

• No ELM avoidance due to low shaping1,2


• Modelling predictions for AUG:

• Small changes in shape sufficient to avoid 

H-mode entry

• Predictions for JET:


• Shape is marginal for ELM avoidance

• No confinement improvement expected


• Test planned shapes in TCV

• Expect ELM-free behaviour in both AUG 

and JET

6
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• New campaign1:

• Experiments with small changes in triangularity


• Weaker shaping:

• Clear high frequency ELMs, as in previous 

experiments

• Stronger shaping: 


• Dithering behaviour, no clear ELMs observed
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NT on ASDEX Upgrade
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NT development on JET

• Experiments: 

• Up to 32 MW heating power

• No clear H-mode or ELMs

• First signs of filaments at highest 

heating power

• Te, ne profiles show no clear pedestal


• Excellent confirmation of H-mode 
avoidance model


• Can use to extrapolate to potential 
future NT devices

8

JPN 105833



M. Dunne | IAEA 2025 | 15 October 2025

NT development on JET

• Experiments: 

• Up to 32 MW heating power

• No clear H-mode or ELMs

• First signs of filaments at highest 

heating power

• Te, ne profiles show no clear pedestal


• Excellent confirmation of H-mode 
avoidance model


• Can use to extrapolate to potential 
future NT devices

8

JPN 105833



M. Dunne | IAEA 2025 | 15 October 2025

The quasi-continuous exhaust regime

• Study access at high plasma shaping and 
(separatrix) density1,2,3

• On present-day devices, this usually 

means high pedestal top collisionality

• Exhibits H-mode-like pedestal, without 

large ELMs

• Transport enhanced by filaments


• Large-scale peeling-ballooning 
instability not triggered


• Broadened power fall-off length in SOL 
region4

9

AUG #36165

1Harrer et al., NF 2018

2Labit et al., NF 2019

3Dunne et al., NF 2024

4Faitsch et al. NF 2023
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Separatrix ballooning modes: quasi-continuous exhaust

• Predictive scan of plasma shape:


• More shaping (~κ2(1+δ)): stabilises local 
ballooning and large-scale peeling-ballooning 
modes 


• Higher shaping opens possibility to destabilise 
ballooning modes for transport before large-scale 
PB modes


• Can express critical α as critical ne,sep:


• αedge,scale = Rq2β/λp,scale, β∝ne,sepTe,sep


• λp,scale = 1.55(1+0.61(0.001qcylν*sep)2.35)ρs


• Can (in principle) make predictions for any 
scenario on any device

10
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QCE: Critical separatrix density

• Clear separation of ELMy and QCE 
plasmas based on shaping and ne,sep in 
AUG, JET, & TCV

• TCV data only from baffled divertor


• Observed separatrix density consistent 
with predicted critical density in AUG and 
JET

• TCV falls significantly below this 

prediction

• ITER prediction for critical separatrix (15 

MA BL) falls within range of:

• Absolute density

• Greenwald density

• Collisionality

11
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QCE: Pedestal top performance

• Compare different scenarios:

• Normalise density to nGW


• Normalise temperature to Ip/κ2


• Dashed lines are then lines of constant βpol


• Range = 0.08-0.2, same in all devices

• Pedestal top pressure in QCE comparable to 

similar ELMing H-mode pedestal

• JET data overlaps in temperature and density

• AUG & TCV at higher density than ELMy cases 


• IPED predictions correspond to experimental 
pedestal top pressure in AUG, JET, TCV

• Predictions for ITER with standard ITER shaping 

compatible with edge ballooning modes1,2,3,4

12
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QCE regime in DT at JET

• QCE demonstrated in DT plasmas at JET1,2

• Access QCE at same engineering 

parameters as in D pulse

• Features best combination of ELMy H-mode 

and QCE from D plasmas:

• No large ELMs observed at similar 

engineering parameters

• Energy confinement improved in DT pulses


• Pedestal density increases at constant 
temperature in both attempted scenarios

• IPED predictions in line with measured 

pedestal heights

13

1Faitsch et al., NF 2025

2Faitsch et al., NME 2025


JPN103446, 104494 Ip = 2.0 MA, BT = 2.8 T
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Comparison of QCE and NT at JET

• Compared scenarios at 1.5 MA/2.3 T

• Same heating power


• Comparable stored energy at same heating 
power


• Significantly higher density in QCE pulse

• Core temperature similar in QCE and NT


• Normalised confinement higher in QCE

• NT recovers stored energy with much larger 

plasma volume

• Filaments visible in QCE


• Very little activity visible in camera 
diagnostics in NT

14
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Summary and conclusions

• Understand QCE and NT ELM avoidance in EF tokamaks


• Demonstrated both regimes in final JET campaign


• Stepladder approach made this possible


• QCE demonstrated in DT


• Predictions show QCE access in ITER/SPARC/DEMO


• NT ELM avoidance based on ideal MHD


• Can predict an NT-DEMO


• Ongoing work:


• Extending NT, QCE to WEST, MAST-U


• Expanding QCE operational range to higher current and (even) 
lower q95 in operational devices


• Demonstrate robust ELM avoidance also in ramp-up


• Further exploration and development of MP ELM suppression 
and QH-mode


• Prospective:


• QCE at lower ν*ped in JT-60SA
15


