Structral Design of the Negative Triangularity Spherical Tokamak (NTST)

Xuesong Ma^{1*}, Tengfei Shi^{1,} Yuxi Wang¹, Qinglei Jia¹,Tianle Zhang¹,Jinping Lu¹,Xianglei Yang¹,Le Zhang¹, Binbin Wang², Shouzhi Wang¹, Yitan², Rui Chen¹

¹Startorus Fusion, Xi'an, China, ² Department of Engneering Physics, Tsinghua University, Beijing, China snowpine_ma@126.com*

ABSTRACT

- The NTST is the world's first originally negative triangularity spherical tokamak. It is designed to in-depth investigate the performance of negative triangularity plasmas and application prospects in fusion reactors.
- Within a 4.5m diamiter, and 7 m height overall structure space, we expect to achieve 1.4T@R=0.65m, Ip=1.3MA.
- •The TU1(and Cr-Zr-Cu) coppers are used in the magnets on 77K temperature for low resistance, and Inconel625 alloys are used in vaccum vessels for high resistance.
- •The main structural scheme derived from multi-physics optimization encompassing electromagnetics, thermodynamics, materials science, and structural mechanics is highly stressed.

BACKGROUND

- No originally negative triangularity spherical tokamak exists ever.
- •The NTST has many advantages on plasma control and mechanical engineering feasibility.
- Thin vaccum is required for high circumferential resistance.
- •Low temperature coils is to be used in future machine we use the LN₂ temperature copper in NTST machine for experience.

CHALLENGES

- Compact spatial constraints and complex vacuum chamber geometries.
- High current-carrying capacity coils.
- High circumferential resistance of vaccum vessels.
- •77K Low temperature copper used in coils & supporting structure.
- •450K high temperature heated on vessels structure.
- Multiphysics coupling analysis & structure degin, including Electricity, Insulator, Thermal, Magnetic, Force, and Structural Strength, etc.

IMPLEMENTATION

Core Components

 Complete the development/iteration/optimization of the following key components based on the core parameters (I_p = 1.3 MA) provided by the physics team.

Magnet Coil & Support Structure

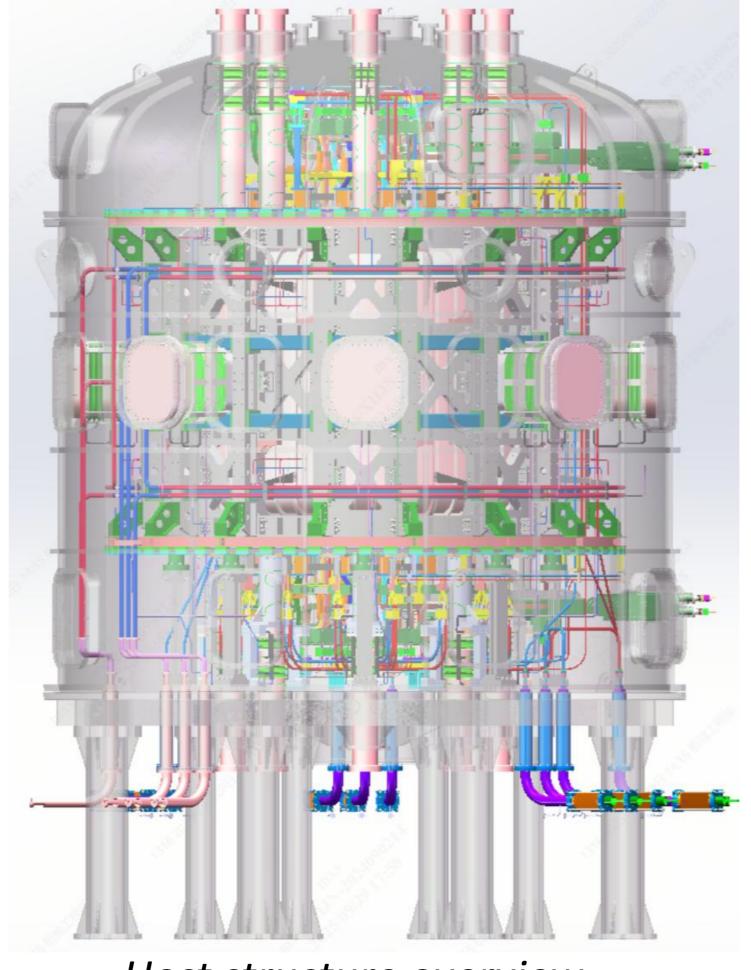
- Designed and optimized the coil positioning, current-carrying capacity, and installation framework.
- Conducted structural strength evaluations under electromagnetic forces, thermal loads (high-temperature baking), cryogenic cooling, vacuum conditions, and seismic impacts.

Vacuum Vessel & Cryostat (Dewar) Structure

- •Ensured plasma operational space requirements while maintaining vacuum integrity.
- Integrated baking pipelines for vacuum vessel conditioning.

Cooling System & Thermal Analysis

- Optimized cooling flow and heat dissipation during current-carrying operations.
- Validated thermal performance under cryogenic conditions.

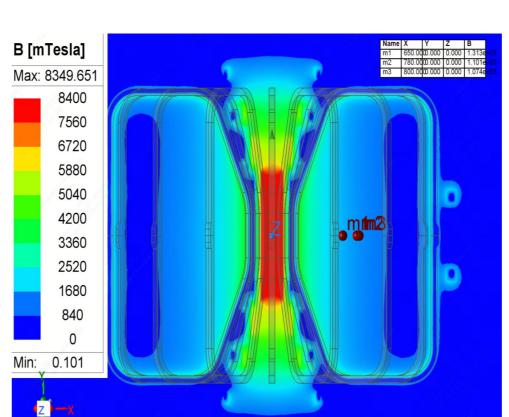

Material & Structural Testing

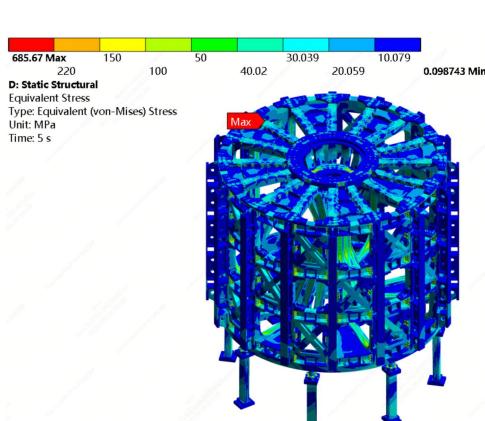
 Performed performance validation tests on critical materials and components to support fabrication, assembly, and maintenance.

OUTCOME

NTST Device

 The NTST machine primarily consists of the following key components: Toroidal Field (TF) Coil and Its Support Structure, Other Magnets (CS, PF, CC Coils), Current Leads, Cooling& Heating pipes, Vacuum Vessel and Devar.

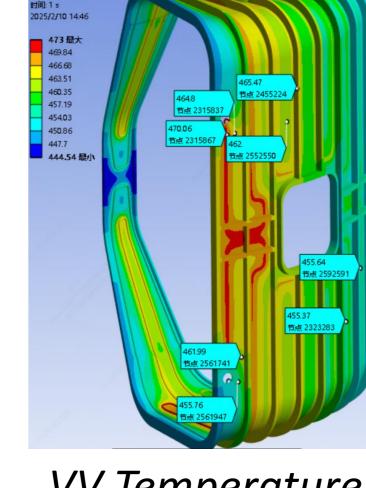

Host structure overview


Internal sectional overview

•The NTST is about 76.4t, and with the dimensions ~7081mm in height/ ~4900mm in diameter.

NTST Multi-physics Validation

 Multiphysics coupling analysis, including Electricity, Insulator, Thermal, Magnetic, Force, and Structural Strength.



TF Coil Magnetic Field

TF Structure Temperature

TF Structure Stress

Equivalent Stress Type: Equivalent (von-Mises) S

VV Temperature

Devar Stress

CONCLUSION & OUTLOOK

Conclusion

- The NTST structural design has been finalized. It meets the physics' specifications and is now ready for production orders.
- It develops the **ME's capabilities** in Tokamak structural design.

Outlook

- The NTST cold source cooling system is in design and development, validation activities are continuously ongoing.
- The entire NTST is expected to be installed and commissioned by the second half of 2026.

ACKNOWLEDGEMENTS / REFERENCES

Produced by Startorus Fusion ME Team.