OVERVIEW OF R&D ACTIVITIES WITHIN IFERC IN SUPPORT OF FUSION DEVELOPMENT IN THE

CONTEXT OF THE BROADER APPROACH AGREEMENT PHASE II

M. Yagi, T. Nozawa, G. Aiello¹, K. Isobe, M. Rubel^{2,3}, S. Masuzaki⁴, A. Widdowson⁵, D. Hamaguchi, J. Kim, M. Nakajima, Y. Sakamoto, J. Elbez-Uzan¹, N. Asakura, S. Wiesen⁶, H. Tanigawa, S. D'Amico¹, N. Miyato, F. Robin⁷, D. Borba¹, S. Tokunaga, F. Sartori⁸, Y. Homma, R. Guillen⁸, F. Fantini⁸, N. Nakajima, R. Kamendjie¹ National Institutes for Quantum Science and Technology, ¹EUROfusion Consortium, ²KTH Royal Institute of Technology, ³Uppsala University, ⁴National Institute for

Fusion Science, ⁵Culham Centre for Fusion Energy, ⁶Dutch Institute for Fundamental Energy Research, ⁷CEA, Centre de Saclay, ⁸Fusion for Energy

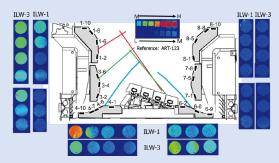
yagi.masatoshi@qst.go.jp

ABSTRACT

- · The International Fusion Energy Research Centre (IFERC) is one of the three projects executed by EU and Japan under the Broader Approach Agreement. IFERC has three lines of activity: the DEMO Design and DEMO R&D activities, the Computational Simulation Centre (CSC) and the ITER Remote Experimentation Centre (REC).
- The progress of DEMO R&D activities in BA Phase II are briefly overviewed; R&D on tritium technology and development of structural material for fusion DEMO in-vessel components.

BACKGROUND

- · Fuel retention studies in plasma-facing materials (PFMs) are important for controlling tritium (T) inventory in the vacuum vessel. ITER has excluded carbon (C) wall components to avoid potential risks of rapid T accumulation by co-deposition with eroded from the wall.
- Under the framework of DEMO R&D activity, JET samples cut from the Be limiters, W-coated CFC and bulk W lamellae divertor tiles retrieved after ILW-1 and ILW-3 campaigns were shipped to QST for detailed analyses of morphology with emphasis on T content. The aim was to obtain the global T distribution pattern in JET with metal walls.


METHODS

NONDESTRUCTIVE ANALYSIS

Scanning electron microscopy analyses (SEM), electron micro-probe analyser (EPMA), X-ray photoelectron spectroscopy (XPS) and T mapping using the IP technique and β -ray induced X-ray spectrometry (BIXS).

DESTRUCTIVE ANALYSIS (not shown here)

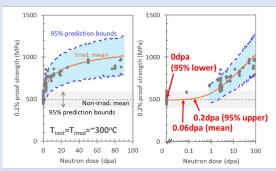
The samples were sectioned for transmission electron microscopy (TEM) and T measurements using thermal desorption spectroscopy (TDS), including full combustion method (FCM).

Cross-sectional view of divertor region of JET together with 2-dimensional θ -ray images of disk samples cored from W-coated CFC tiles (Tiles 1, 3, 4, 6, 7 and 8) and sample taken from W lamella tile (Tile 5, Stack C, C3 lamella). Reproduced from Fig.7 in Ref.[1].

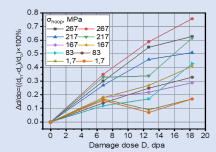
OUTCOME

- In the divertor region, the T-containing co-deposits were preferentially formed on the W-coated CFC tiles located at the upper-inboard region (Tile 1) and shadowed regions of floor tiles (Tile 4 and Tile 6).
- The co-deposit formed on the shadowed region of Tile 4 (Sample 4-10) in ILW-1 showed outstandingly high T concentration. Such co-deposits with high C and T contents were not observed after ILW-3.
- The T retention in the W-coated CFC divertor tile after ILW-3 was higher than that after ILW-1.
- The T retention on plasma-facing surfaces of the bulk W tile lamellae was negligibly small, while co-deposition of T with Be and O were observed on the side surfaces facing to toroidal and poloidal gaps.

BACKGROUND


- To develop the technical basis for DEMO SDC for in-vessel components; Breeder Blanket and Divertor and respective material Annexes for RAFM steels, Cu-alloys, and W-based materials.
- Due to the limited number of existing data (F82H), this study specifically employs a Bayesian prediction method based on Monte Carlo simulations to determine a material reference value with statistical reliability and to investigate its effectiveness.
- In parallel, MPH based on conventional method has been developed for EUROFER97-3.

METHODS


PROBABILITY-BASED DESIGN

Log-Normal model ϕ_0 : Threshold ϕ : Neutron dose

$$\frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad \phi < \phi_0 \quad \begin{cases} \mu(\phi) = \mu_0 \\ \sigma(\phi) = \sigma_0 \end{cases} \\ \phi > \phi_0 \quad \begin{cases} \mu(\phi) = \mu_0 + \beta_1 log_{10}(\phi - \phi_0 + 1) \\ \sigma(\phi) = \sigma_0 + \beta_2 log_{10}(\phi - \phi_0 + 1) \end{cases}$$

0.2% proof strength vs. neutron dose dependence with mean and 95% Bayesian prediction bounds (Log-Normal model). Reproduced from Fig.7 in Ref[2].

High dose data on irradiation creep of EUROFER97-3 at Tirr=325° C obtained in BOR-60 reactor. Reproduced by the presentation in Ref.[3].

OUTCOME

- Bayesian method is applied to determine reference standard strength for neutron-irradiated F82H. 'Log-Normal' distribution gave better predictions for 0.2% proof strength.
- MPH of EUROFER97-3 has been developed using high dose on irradiation creep.

REFERENCES

- [1] S. E. Lee et al. Nucl. Mater. Energy 26 (2021) 100930.
- [2] T. Nozawa et al., J. Nucl. Mater. 604 (2025) 155486.
- [3] G. Aiello et al., ICFRM-22, 28th September 3rd October 2025, MARINART, Shizuoka, Japan