

STEP Exhaust System – Architecture and Technology Development Overview

¹S. Wang, ¹B. Chuilon, ²A. Barth, ¹T. Hebrard, ¹S. Pau, ¹S. Desai, ¹S. Henderson, ²A. Tarazona, ¹N. Correa Villanueva, ¹A. Thornton, ¹W. Kyffin

¹UK Atomic Energy Authority, Culham Campus, Abingdon, Oxfordshire, OX14 3DB, UK ²UK Industrial Fusion Solutions Ltd., Culham Campus, Abingdon, Oxfordshire, OX143DB, UK

songke.wang@ukaea.uk

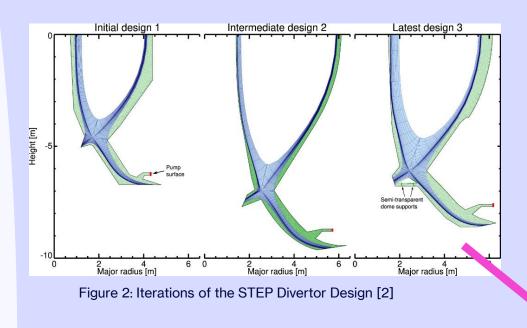
Abstract

Spherical Tokamak for Energy Production (STEP) is a UK-led programme aiming to deliver a first-of-akind fusion prototype powerplant (SPP) [1].

Heat and particle exhaust is a fundamental challenge for the STEP SPP. The smaller radius of a spherical tokamak (reduced capital costs) increases the exhaust challenge due to the reduced area available to dissipate heat and manage particle exhaust.

Primary Divertor Configuration: **Dynamic Double-Null (DN)**, however assumes variation in power sharing between upper and lower.

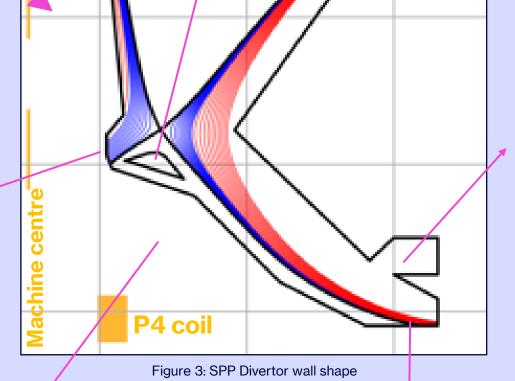
The divertor plasma will operate in detached mode, maintaining heat and particle loads within engineering limits.


The successful realisation of the SPP exhaust system is therefore reliant on understanding and balancing a wide range of trade-offs, such as balancing heat load management and compatibility with the power generation cycle when specifying coolant temperatures.

The SPP exhaust system has the following functions:

- o Managing heat and particle loads: 'zoned' PFCs with Monoblock, Brushblock, Tile on Heat Sink PFCs
- Shielding magnet coils: CO2 cooled divertor cassette with embedded W alloy materials
- o **Extracting impurities**: optimised wall shape and purposely positioned vacuum pumping duct

System Architecture – Wall shape


The divertor wall shape has undergone multiple iterations, driven by a combination of increasing fidelity in divertor modelling and iteration of overall machine parameters (e.g. major and minor radii).

Dome: A 'dome' structure is included between the inboard and outboard legs, facilitating transport of neutral particles to the outboard legs, where the vacuum pumps are located, while minimising core plasma pollution. The dome will ultimately involve a trade-off between pumping efficiency and detachment access.

Inboard: short inboard legs approaching an X-divertor. STEP as a spherical tokamak, with a smaller major radius, has less physical space to distribute the power, particularly on the inboard side. If STEP adopted a conventional divertor design, the unmitigated heat flux would be three times higher compared to EU DEMO concepts.

Shielding: The divertors protect the superconducting magnet coils located above and below the tokamak, an essential function to demonstrate a pathway to a commercially relevant machine lifetime.

Pumping: Vacuum duct / pumps is positioned to achieve a balance of achieving sufficient pumping speeds and allowing sufficient pressure to build up near the outboard target to ensure detachment.

Outboard: a tightly baffled super-X divertor/Extended leg. In MAST Upgrade, Super-X has already demonstrated at least a tenfold reduction in the heat on divertor materials. If STEP adopted a conventional divertor design, the unmitigated heat flux would be **twice** as high as EU DEMO concepts.

Fusion Power	1.6-1.8 GW	
Net electric power	100-200 MWe	
Inboard Build	1.9 m	
Major Radius	4.275 m	
Magnetic Field	3.0 T	
Plasma current	20-25 MA	
Elongation	~3	
Triangularity	~+0.5	
Plasma Edge	Edge Pedestal	
HCD Mix	EC + EB	
Primary Divertor Configuration	Dynamic DN	
Secondary Divertor Config (Inboard)	Flat Top: X Type	
	Ramp Up: Perpendicular	
Secondary Divertor Config (Outboard)	Extended Leg	
TF Conductor Type	REBCO	
Primary Maintenance Access Route	Vertical	
Remountable Toroidal Field Coils	12 TF coils	
	(3 Remountable joints per TF)	
Peak Steady State Divertor Heat Flux	<20 MW/m ²	
Tritium Breeder Material / Breeding ratio	Li ₂ O / >1.0	
Centre Column / Divertor Coolant	D ₂ O & H ₂ O / CO ₂ & H ₂ O	
OB First Wall, Blanket, OB Limiter Coolant	CO ₂ / He	
Blanket Coolant Outlet Temperature	600°C	

System Architecture - Subsystems

Heat and particle loads will vary spatially over the divertor surface under a range of normal and off-normal operating conditions. To achieve a balance of performance and reduced complexity, the STEP divertor uses different Plasma Facing Component (PFC) designs at different locations. This 'zoned' approach is illustrated below. [3]

Edge-Localised Modes (ELMs) pose a key design challenge and drive strike-point technology choice and PFC design. Brushblock PFC, i.e. Microbrush on a Monoblock, has been baselined as strike point PFC technology to replace Liquid Metal Armour (LMA) concept.

Zoned-approach PFCs

Gas cooled Cassette

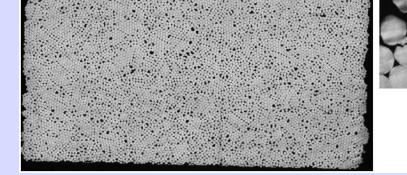
Cassette will mainly provide shielding function in addition to supporting PFCs.

CO₂ cooled divertor cassette design with Eurofer97 as structural material aims to reduce activated waste inventories and provide high grade of heat.

Tungsten (W) alloys will be embedded to aid shielding performance.

Spatial constraints are prominent in this area.

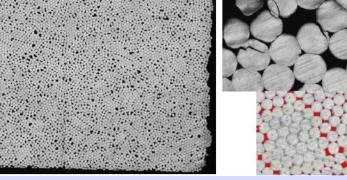
	Strike Point	High Heat Flux zones	Low Heat Flux zones
Steady-State (flat-top)	10MW/m ²	10MW/m ²	10MW/m ²
Steady-State (ramp-up)	20MW/m ²	20MW/m ²	10MW/m ²
ELMs	0.1-1MJ/m ²	N/A	N/A
Key features	Brushblock	Monoblock	Tile on Heat Sink
Material	W wire/ W/CuCrZr	W/CuCrZr	W/CuCrZr/Ste el
Coolant	D2O		
Rationale	Crack resilient during Type-I ELMs.	ITER proven technology.	Significantly reduced part count.

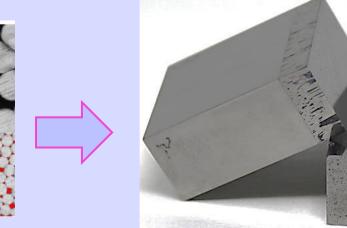

Technology Demonstration - Progress

Brushblock PFC manufacture

Tile on Heat Sink

PFC sizing study


Cassette section



Tungsten wire 'bristle pack'

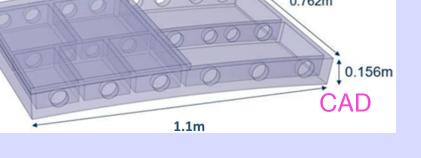
· Successfully manufactured

Good wire density achieved

- Initial demonstrators
- The joints characterised
- Some cracking observed in tungsten block • High Heat Flux (HHF) test (in progress): both

W-Cu alloy Joint ion irradiation test

steady-state and transient loads


- Tile on Heat Sink (ToHS) PFC demonstrators Variants in W tile sizes/thickness & interlayer • HHF test planned in 2025
- Different joining methods compared

· Bristle pack successfully joined to W block

at PFC relevant scale in next step

- Different interlayers/fillers/coating applied
- Joint characterised & strength tested

Manufacture trial of

W to Cu alloy joint coupon trials planned · Ribs with constant thickness Welding of top lid

References:

[1] J. Cane et al, "Managing the heat: In-Vessel Components," Philosophical Transactions of the Royal Society A, vol. 382, no. 2280, 2024 [2] S. Henderson et al, "An overview of the STEP divertor design and the simple models driving the plasma exhaust scenario," Nuclear Fusion, 2025. [3] A. Barth et al, "STEP Divertor - PFC layout, recent design changes and development activities", SOFE 2025

Technology Demonstration - Plan TRL4 TRL2 TRL3 2027 2024 2025 2026 2028 2029 $\Diamond \Diamond \Diamond \Diamond \Diamond$ $\Diamond \Diamond \Diamond$ PFC Tungsten baseline testing W-Cu alloy joints irradiated testing PFC Cu alloy baseline testing Shielding material baseline testing W-Cu alloy joints ion irradiation testing **Materials** PFC materials irradiated testing PFC plasma wall interaction test Shielding material neutron test W tile on Cu alloy manu. trials Brushblock & ToHS PFCs optimised manu. Trials Monoblock PFU Brushblock manu. Initial trials **Brushblock PFU** Cu alloy - Steel joint qualification **PFC NDT Inspection trials** ToHS PFU manu Cassette section & shielding demonstrators & supports manu. trials Manufacturing **Integrated Cassette** Cassette section manu. trials section manu. demonstrators Tile-on-Heat-Sink PFC HHF test **Brushblock PFC HHF test** Monoblock PFU Brushblock PFU ToHS PFU PFCs HHF & synergistic test HHF test **Component Testing** PFCs critical heat flux test **Integrated Cassette** Shielding volumetric heating test section functional & integration test *NDT: Non-Destructive Testing Vacuum seal manu. & leak test *PFU: Plasma Facing Unit

Technology development plan covering the materials, manufacturing and component testing activities for the Exhaust system with the target of achieving at least Technology Readiness Level (TRL) 4 by 2029.