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‘Digital first’ is -

critical for achieving @i
near-term milestones

The in-vessel conditions of a fusion reactor are
unique and extreme; the combined load is
impossible to find anywhere except in a fusion
reactor.

Fusion has historically been designed by iteration,
but delivery of a fusion pilot plant in 10 — 20 years
will not allow for substantive de-risking by further
experimental devices.

Traditional approach is driven by physical testing,
this approach must evolve to adopt simulations as
first step, with experimental testing confirming the
modelling predictions.
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Models must inform the selection, design and operation of experimental rigs and facilities
Experiments at a smaller scale than a full reactor are still required

1. Model assumptions

2. Real-world complexity

3. Model validation and calibration

4. Computational complexity

Examples of modelling as a driving force in the delivery of
fusion power:

1. Tritium fuel cycle modelling

Materials development

2
3. Robotics and decommissioning
4

. Virtual com ponent q ualification Chimera heat transfer simulations — enabling optimised
understanding of real-life system performance
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Tritium fuel cycle modelling

Understanding tritium inventory requirements for a fusion power plant fuel cycle

In-vessel
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Aim: Develop models that will provide tools to determine the time evolution of tritium
inventory required to sustain a viable fusion power plant of a given design.

» Inventory requirements in the literature give inventories in the range of 300g to 22kg — used
mean residence time methodology

UKAEA Approach

« Top-down dynamic models at plant and subsystem levels - no system stands in isolation and
an integrated view including time evolution is essential to truly understand the relative
contributions and requirements

» Bottom-up: understand dominant physical processes at a fundamental level — data not
always available

» Our models utilise and influence data from all our tritium experiments and facilities
« Enable the assessment of design choices through their impact within full fuel cycle context

| IAEA FEC 2025
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Develop models that will provide the tools to determine the time evolution of tritium inventory required

to sustain a viable fusion power plant of a given design - . .
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Simulink-based tool for modelling various fuel cycle architectures and studying the impact on tritium inventory
* Multi-species (H, D, T, He)

« Dynamic; each unit inventory changes over time. Batch processes can be modelled

* Modular; interfaces allow more complex unit models to be inserted
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Materials development

The combined load of temperature, heat flux, neutron flux, magnetic fields and erosion that
the in-vessel materials are exposed to is impossible to find anywhere except in a fusion

reactor

9 | IAEA FEC 2025
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Effects of high energy (14.1 MeV) fusion neutrons on in-vessel materials

Transmutation: S U Defect production: %
1o?1 ______ '_"_‘_,'_ E;\?’;\---F- _NE)-_' Ni, -« W
Ni-58 + n = Ni-59 + vy e Y ™ I
| i o) \.::‘: - .\ ,/V \ / J
Ni-59 + n =» Fe-56 +a  [i] L4t
:,1 *. x Primary knock-on atom (PKA)
a+2e @ “‘ \ /
10": \\-————o——-o
— embrittlement. R e /./ \ /.
“Reduced activation” elements selected to target raZ?a’I.'(Eﬁ'?%Z K 3\ /‘
ILW and LLW production.

Our research focuses on engineering materials that can withstand these effects without
generating high-level, long-lived radioactive waste

| IAEA FEC 2025
Gorley MJ. et al. Mat. Sc. Tech. 31 8 (2015) 975-980



Engineering materials for fusion

We utilise modelling to:

Inform material design and irradiation experiments

Time: 0.00 seconds
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Provide insights into radiation induced
material degradation and defect
production, observed in experiments

Implantation
direction

Surface
N
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Above: Haley J et. al. J. Nucl. Mat. 596 (2024) 155115.
Middle: Gilbert, M.R. et al., Nucl. Sci. Eng. 177 3 (2014) 291-306
Right: Goodall, R. et al., Ironmaking & Steelmaking 0 0 (2024).
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We utilise experimental data to support development and validation of computational
models describing deformation and corrosion mechanisms, as well as defect production
and evolution

SIMULATION

TR,

TR ——"

EXPERIMENT

1 2 | IAEA FEC 2025 Above: Leide A et. al. J. Eur. Cer. Soc. 45 (2025) 117624
Right: Quadling A. et al., Phil. Trans. R. Soc. A. 382 20230409 (2024)
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Robotics and decommissioning

Developing and optimising remote handling operations
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Robotic Maintenance and Decommissioning

Digital first approach has been central to maintenance and decommissioning operations

Digital platform now at UKAEA

Operation concept
development
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‘ : ? o i Remote perception
PN e assistance
3Bl R { Motion planning and }
o /

rehearsals

Planning tool for
operators

Advanced control and
operation digital twin

New digitised functions
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Robotics - Control & Operational Digital Twin

Advanced physics engine to simulate complex nonlinear dynamics
Real-time digital twin (including the robot’s vibration & deformation) of operation

1=
Physics engine
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e Long-reach operation (verified in validated simulation)

80% vibration reduction
3x faster operation speed
No safety compromise



Start Finish

Improved insight by adding science based advanced modelling and
simulation to theory and experiments

Advanced science based

Well Well
understood Limited theoretical and experimental .
initial insight into physical processes characterised
" effects
conditions

Modelling and simulation

Component qualification

How to qualify components for operating in the extreme and untestable environment of a

future fusion reactor

1 6 | IAEA FEC 2025

3
UK Atomic

Energy
Authority

Lazelere 2010 DOE-NE



Roadmap to virtual qualification -
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Development of
Credibility
Assessment
Framework

Multiple validation
experiments combined
to overall model
uncertainty

Extrapolation to
models of untestable
environments

Validation approach
incorporating
uncertainty

Probabilistic
performance prediction,
incorporating model
validation uncertainty
(grey area)
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The goal: robust reporting to
decision makers and
regulators demonstrating
predicted component
O performance and associated
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Validation example: induction heating of a

monoblock

Data-rich experiments
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Robust results comparison with uncertainty
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Delivery of new facilities
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Delivering new facilities

/ LIBRTI \ / H3AT \ / CHIMERA

A

i
» Reproducibly achieve tritium « UKAEA s partnering with ENI to » Testing of prototype components in
production with 14MeV neutron deliver a 1009 closed loop tritium a fusion relevant environment.
source facility » High temperatures, high heat flux
» Predict with digital simulations » Digital twin already operational (HHF), high vacuum, static and
« Able to handle lithium materials, as || * Develop, validate and derisk fuel pulsed magnet loads
solid, liquid or molten salts cycle technology » Simulation development will enable
» Develop skills and knowledge of » Significant space available for virtual qualification
Breeder Blanket design and experimental work » Key facility within the Fusion
performance Technology Facility in Rotherham.

\Design process underway/ \ Procurement underway /\ Under construction /

| IAEA FEC 2025
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Summary

UKAEA is focused on delivering solutions as quickly and
efficiently as possible by utilising a digital first strategy to solve
problems and guide strategic use of experimental facilities

This approach has delivered significant benefits across
materials, tritium, robotics and many more areas of
research

New facilities in delivery have prioritised the development
of digital twins to ensure scientific output is maximised

Thank you!
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