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Overview of Wendelstein 7-X 

High-Performance Operation
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Wendelstein 7-X achieved…
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✓ Long pulse operation with 1.8GJ energy turnaround

✓ A new stellarator record triple product 𝑛𝑇𝑖𝜏𝐸

✓ Improved confinement exceeding 𝜏 ൗ𝐿 𝑅

✓ W7-X record plasma- in X3 heating scenario



Wendelstein 7-X Operation Overview
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▪ two full operation campaigns in years 2024/2025

  adjustment of operation schedule to improve efficiency by operating two experimental campaigns

with only one commissioning phase

 key operation components (cryo plant, vacuum systems, …) in full operation for more than 1 year

 reliability of device operation better than 1%!

▪ operation in more than 77 magnetic field configurations, spanning a wide range of edge rotational transform 

and magnetic mirror ratio



Main new systems and functionalities
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▪ increase of plasma heating power

➢new prototype high-power ECRH gyrotron delivering      

1.3MW@140GHz steady-state

➢routinely operated at 𝑃𝐸𝐶𝑅𝐻 > 1𝑀𝑊 during plasma discharges 

 

S. Ponomarenko et al., IEEE Electr. Device L. 45 (2024)



Main new systems and functionalities
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▪ increase of plasma heating power

▪ operation of new steady-state pellet injector

➢ injection trajectory near plasma center

➢adjustable pellet size (2-3mm)

➢repetition frequency up to 10Hz

➢pellet speed 250-1000 m/s

➢up to 30min injection duration

 

Cryostat

(extruder)

Vacuum systems

(pellet guide tube)

S.J. Meitner et al. IEEE T. Plasma. Sci. 48 (2020)



Main new systems and functionalities
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▪ increase of plasma heating power

▪ operation of new steady-state pellet injector

▪ reliable operation of new ICRF system 

➢radial antenna (double strap) position system

➢ frequency range 25-38MHz@Prf≤1.5MW

➢ first results from minority heating 4He-(3He)-H

J. Ongena, #2834 (P4 -Thu.)



Main new systems and functionalities
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▪ increase of plasma heating power

▪ operation of new steady-state pellet injector

▪ reliable operation of new ICRF system 

▪ new plasma feedback control systems

➢plasma radiation control by feedback impurity seeding

➢ECRH power stabilization for long-pulse operation and 

possibility to re-start gyrotrons



Wendelstein 7-X – operation parameters
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quantity unit value

magnetic induction T 1.8, 2.5

rotational transform 2 5/6 … 5/4

ECRH power MW 8.5 (>10)

NBI power MW 7 (>10)

neutral gas H2, He (D2)

PFCs C + Fe + W

plasma volume m3 30

divertor heat flux MW/m2 10

heating energy GJ 2 (18)

▪ near future enhancements

➢ increase of plasma heating power by further upgrades of the

ECRH and NBI systems

➢Deuterium operation in preparation



Content

1. Long-pulse operation
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3. Operation at high plasma-

- development of a new operation regime

- discharge characteristics and achievements
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Long-pulse operation: previous results
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1.3GJ achieved

▪ scenario issues:

➢plasma heating power not constant due to failures of individual gyrotrons 

➢heating power limited due to divertor hot spots/leading edges

➢bootstrap current approaches W7-X safety limit 

  operation with X2 ECRH (good single-pass absorption) and detached divertor via radiation feedback control

 feedback stabilization of ECRH to keep heating power constant

 counter ECCD to control amplitude of total toroidal current (bootstrap + ECCD)

O. Grulke et al. Nucl. Fusion 64 (2024).



Long-pulse operation
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Long-pulse operation
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▪ heating energy of 1.8GJ achieved

    heat control issues within ECRH       

beamline

▪ ECRH power stabilization regulated heating 

power to constant level

▪ toroidal current remains small Itor≤3kA

▪ detachment via radiation feedback keeps

divertor heat loads small and well below

specification

S. Marsen, #2805 (P3 – Thu.)
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Improved confinement I: Combined NBI and ECRH
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▪ combined NBI and ECRH discharge

➢ pure NBI heating phase, re-introduction of ECRH in O2 polarization

➢ steep rise of stored energy to 𝑊𝑑𝑖𝑎 = 1.8𝑀𝐽, equilibrated temperatures to 𝑇𝑒
= 𝑇𝑖 = 2.8 𝑘𝑒𝑉 for a period of ≈ 2𝑠



Improved confinement I: Combined NBI and ECRH
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▪ combined NBI and ECRH discharge

➢ pure NBI heating phase, re-introduction of ECRH in O2 polarization

➢ steep rise of stored energy to 𝑊𝑑𝑖𝑎 = 1.8𝑀𝐽, increased equilibrated 

temperatures to 𝑇𝑒 = 𝑇𝑖 = 2.8 𝑘𝑒𝑉 for a period of ≈ 2𝑠

➢ improved confinement at times with central plasma density peaking due to a 

combination of core (NBI) fueling and reduction of particle transport
S. Bannmann, #3085 (O -Thu.)

S. Bannmann et al. Nucl Fusion 64 (2024).



Improved confinement II: Long-pulse pellet fueling
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▪ combined ECRH and pellet fueling

➢ initial rapid pellet injection and heating 

power step-up to achieve central density 

peaking

➢ feed-forward prolongation of peaking with

reduced pellet injection frequency to 𝑡
> Τ𝐿 𝑅

➢ increased equilibrated temperatures     𝑇𝑒
= 𝑇𝑖 = 2 𝑘𝑒𝑉

➢ divertor heat flux control via feedback

radiation control

➢ loss of quasi-stationarity when ECRH 

power is reduced, highlighting the crucial

interplay between plasma heating and

pellet fueling

 longest improved confinement scenario achieved in 

W7-X so far



Physics mechanisms
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▪ turbulent heat transport forms into two distinct regimes

➢ considerable difference in heat diffusivity by a factor of 4-5  

➢ “critical” normalized density gradient Τ𝑎 𝐿𝑛 ≈ 1

▪ direct observation of relative turbulent fluctuation amplitude reduction with increase of core density 

gradient due to a reduction of ITG transport



Fusion triple product
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Fusion triple product
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▪ stellarator record triple product increased in value and duration (1.12 ∙ 1020 ൗ𝑘𝑒𝑉 𝑠
𝑚3 for 2𝑠)

▪ W7-X displays comparatively little decrease of performance for long-pulse operation

 demonstrates the advantage of the optimized stellarator concept for long-pulse high performance operation

X. Litaudon, #2770 (P4 -Thu.)

size

effect
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Scenario development for operation at high plasma-
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▪ assuming 𝜏𝐸
𝐼𝑆𝑆04~𝑛𝑒

−0.54𝑃−0.61𝐵0.84, reduced magnetic field leads to enhanced plasma-𝛽~ Τ1 𝐵2

▪ 𝐵 = 1.8𝑇 allows for X2 ECRH startup via de-tuned gyrotron (frequency of 101GHz)

▪ X3 ECR heating (140GHz) on-axis at increased plasma-

 absorption strongly temperature dependent: 𝑃𝑎𝑏𝑠~𝑛𝑒𝑇𝑒
2

  pure NBI heating phase to increase n, Te



Plasma- achievement
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▪ operation at B=1.8T with increased overlap of NBI 

phase and ECRH

▪ moderate peak plasma-<2% in intial discharge

phase incrased to 4% during pure NBI heating

▪ strong increase of plasma- in combined heating

phase

➢ increase of peak plasma->10%

➢ volume-averaged <>=2.8% transiently

achieved

 highest achieved plasma- in W7-X so far



Summary
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▪ W7-X successfully finished long phase of plasma operation with very solid device, heating, and diagnostics

operation, considerably broadening the oepration map in magnetic field and plasma parameter space.

▪ A reliable scenario for long-pulse operation was developed and an energy turnaround of 1.8GJ was 

demonstrated.

▪ A new record triple product (combined NBI and ECRH) was achieved and long-pulse operation (pellet fueling) 

exhibited improved confinement and a core-edge compatible scenario.

▪ A new regime of ECR X3 heating at reduced magnetic field was successfully developed and already W7-X 

record values in plasma- were achieved. 



Wendelstein 7-X related contribution to IAEA FEC 2025
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D. Moseev et al. First fast ion measurements by the collective Thomson scattering and ion 

cyclotron emission diagnostics at Wendelstein 7-X. 
#3050 (P3 – Thu.)

D. Zhang et al. Impurity Accumulation and Radiation Dynamics in advanced Scenarios in 

W7-X 
#2634 (P1 – Wed.)

S. Bannmann et al. Attaining Tokamak level performance through plasma density profile shaping 

at Wendelstein 7-X 
#3085 (O – Thu.)

C. Killer et al. Drift flows impact island divertor operation in Wendelstein 7-X #3182 (O – Thu.)

Y. Gao et al. Observation and control of 3D heat flux on the plasma facing component in 

Wendelstein 7-X
#2668 (P6 – Fri.)

S. Marsen et al. The Wendelstein 7-X ECRH plant – Experience with reliable long pulse 

operation of a multi MW gyrotron installation
#2805 (P3 – Thu.)

J. Ongena et al. Progress with commissioning the icrh system for the large optimized 

stellarator Wendelstein 7-X 
#2834 (P4 – Thu.)

Y. Feng et al. First quantification of volume recombination in W7-X with EMC3-EIRENE #3024 (P5 – Fri.)
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