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@ Physics issues for plasma control
-

There are interactions and interplay in plasmas, for the reliable control of
plasma , it is necessary to understand:

1. Interplay of light and heavy impurity ions to avoid impurity
accumulation and to keep good confinement

2. Interactions of turbulence to control transport

1) Interactions of ion and electron scale turbulence
i) Interplay of local and non-local characteristics
iii) Interactions of different turbulence modes

3. Interactions between EP driven waves and bulk ion
Possibility of the direct ion heating by wave-particle interaction
) EGAM

i) MHD burst

Based on physics knowledge, advanced plasma control using data assimilation is presented by
Morishita (17 Oct 8:30 TEC-CTRL Oral).
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Core heavy impurity transport was enhanced by Li powder

Li
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Molybdenum TESPEL (Tracer-Encapsulated Solid Pellet) was
injected at 5.225s for the investigation of heavy impurity transport.

D. Medina-Roque 16th Oct, 8:30
EX-C posters 3

Red; with Li, Blue without Li

v' Improvement of energy
confinement was found.

' v" Decay time of Mo31+ is clearly

shorter with Li powder
indicating enhancement of
heavy impurity transport.

v' Interplay between low Z and
high Z impurity
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Simultaneous measurements of ion and electron scale turbulence.
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After the bifurcation

lon-scale turbulence ﬂ

Electron-scale turbulence ﬂ

Anti-correlation of i-scale and
e-scale turbulence was found.
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turbulence anisotropy
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Before bifurcation:

Radially elongated turbulence eddy
After bifurcation:

|sotropic turbulence.
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Conditional averaged
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Turbulence transitions from ITG to R

Local flux tube gyrokinetic ITG growth rate

Kinoshita et al. PRL 2024 Minimum turbulence level
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Turbulence phase velocity in the lab frame can be indicator of ITG or RI
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» We consider keeping turbulence minimum condition at turbulence transition by feedback control.

» What determines the turbulence transition (n., T, T,, T./T,, dn/dr, dT/dr, dT/dr ...... )?
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Keeping minimum turbulence condition improved confinement.

Q

- at p=0.5-0.7 4 Tinoshita
;. N,=420T,-5.28 ~ | : nd 17 Oct 11:40 Oral
e I
6- ER | #193313
=° [7——193313 W/O conffol . W/O control
Eh D Rl dominant
£ 4] S 4
= 2 5t #193337
% 37 52 W/control
9 o =71 Rl is supressed
025 due to the
1 0 : lowering
0 %U ) resistivity with
3 s ECRH
= 0.3
0.2k
Time (sec)
2000 data machine learning ECH power was controllec _.
established transition condition. to keep transition

30th IAEA Fusion Energy Conference (FEC2025) 13-18 October 2025, Chengdu, People’s Republic of China



lon heating by ion Landau damping was found in LHD

@
-
In DT-burning plasma under dominant electron heating, hot ion plasma having T, =T, is required
for improved confinement and high fusion performance.

o particles heat electrons predominantly by the collisional slowing down process.

There is a possibility of direct ion heating by the Landau damping of EP driven waves.
D+ T+ He2+ (o particle) n

&

+ O

E

. —

collision collision ‘
electron

ion
I--Landau damping /\/\/ Excitation -

1. Landau damping of energetic particle driven Geodesic Acoustic Mode in plasma centre
2. Landau damping of energetic particle driven MHD burst in plasma periphery region
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» Turbulence does not change — no improvement in
anomalous transport
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» Energetic particle driven Geodetic Acoustic Mode
(EGAM) is identified by Alfven spectroscopy with
magnetic probes, HIBP and AE3D code

» EGAM damping correlates well with T, -increase

» The EGAM frequency does not respond to the T, -
increases.—Supporting evidence of EGAM

» Collision process (slowing down of NNB and
equipartition heating) does not account for the
increase of T, and additional P; is required

T., and <P> with collisional heating process

5 5 55 6 65 7 75 8.5
time (s)

30th IAEA Fusion Energy Conference (FEC2025) 13-18 October 2025, Chengdu, People’s Republic of China



10.1ms 300 py—r—

250

200

2 150
——

100

50

e -

o
-0.1ms

b
SE Odms 2
- -800  -400.-"0 400 860
E . velocity (km/s) ;
o 1.0 =" gy
MHD burst appears just before =osf(D 0 ims
\ - —-l. 3
decrease of neutron rate — Evidence of = gj  0ims 3
EP driven mode 5 .,
Ida, 18 Oct 9:30 PD oral MHD burst deforms ion velocity function 0.0 aua o '
. . 0 200 400 600 800
and increases ion temperature velocity (km/s)

30th IAEA Fusion Energy Conference (FEC2025) 13—18 October 2025, Chengdu, People’s Republic of China



Summary: We have found the key knowledge to solve issues

e

1. Interplay of light and heavy impurity ions to avoid impurity accumulation and to
keep good confinement — Li powder improves bulk transport and degrades
heavy impurity transport.

2. Interaction of turbulence to control transport
1) Interaction of ion and electron scale turbulence
— anti-correlation of i-scale and e-scale
i) Interplay of local and non-local characteristics — co-existence of both
lii) Interaction of different turbulence modes — ITG-RI transition is controlled
and leads to improved confinement

3. Interactions between EP driven waves and bulk ion
Possibility of the direct ion heating by wave-particle interaction
1) EGAM

i) MHD burst

— heating by the ion Landau damping
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@ All presentations from the LHD experiment group
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Boron powder drop condoled the in-flux of impurity

Boron powder dropping
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DA for control
Simulated variable
\Target Variable

—_—

Prediction and
control

Variable

Observed variable

Time

v' Observed variables are assimilated to
the target variable

v' Real time simulations with input data
from real time signals are carried out

and predict the profiles at next timing.

v" The control works to minimize the
difference of target and
observation/prediction.

@ Vector machine
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Realtime profile control is successfully demonstrated by using ASTI system
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H. Ohtani et al, 17 Oct., 14:00
TEC-CTRL Posters 6 (post deadline)

Visualization of triton impacts
Room size (4x4x4m) VR system
for LHD(CompleXcope)

Newly developed HMD VR system
for LHD

Kageyama et al,
Proceedings of 16th Int. Conf. on the
Numerical Simulation of Plasmas (1998)

Ohtani et al,
J. Visualization. (2022)
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Li drop in the Virtual LHD
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