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HL-3 Main Parameters

Major radius R = 1.78 m

Minor radius a = 0.65 m

Aspect ratio R/a = 2.8

Plasma current Ip = 2.5 (3) MA

Toroidal field Bt = 2.2 (3) T

Elongation 𝜿 = 1.8-2

Triangularity δ > 0.5

Heating power 
NBI (20) + ECRH (11) +

LHCD (4) + ICRH (6) MW

Mission of HL-3 tokamak 
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◼ Critical physics and technology challenges for ITER and next-step fusion devices

➢ High-performance scenarios compatible with low heat load

➢ Deep understanding of high-performance plasma physics

➢ Tests and validation of high heat flux plasma-facing components



Key features
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◼ Comprehensive operation scenarios

❑ Baseline Operation 

Ip = 2.5 MA, q95=3, H98,y2 = 1.0 

❑ Hybrid Operation 

Ip = 1.0~1.4 MA, fBS ~40%, fni ~70%, N > 2.5

❑ Steady-State Operation

Ip = 1.0-1.2 MA, fully non-inductive current drive, N > 3.0



Key features

Snow flakes(SF) TripodSF-Double-null Negtive

triangularity
Single-null

◼ Comprehensive operation scenarios

◼ Flexible magnetic configurations
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Key features
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◼ Comprehensive operation scenarios

◼ Flexible magnetic configurations

◼ High accessibility for experiments

❑ 128 ports: diagnostics, fueling, heating and current 

drive systems

❑ Flexible capacity on heat and particle exhaust: actively 

cooling divertor and strong pumping speed cryopump 

(38 m3/s)



Staged research plan of HL-3

✓Ip = 100 kA

✓Limiter/divertor  

configuration

II. Initial research

✓Ip ≥ 1 MA

✓H mode discharge

✓Advanced divertor 

control

I. First plasma

III. Integrated research

IV. Extended Research 

• Ip ≥ 2 MA

•Ti ~ 10 keV

•Advanced scenarios 

•Heat/particle control

•Configuration control

•AI for fusion

•Triple product ＞1020m-3·keV·s

•Fusion reactor grade plasma 

operation and physics research

•Fusion reactor related integration 

scheme verification

•Fusion reactor related critical 

components/diagnostic tests

2025 20302020

II. Initial research

I. First plasma

III. Integrated research

IV. Extended research 
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Now, we are here



First 

Plasma

2022

1.15MA plasma

2020 2023

✓ 1MA H-mode Operation

✓ Advanced Divertor (Snowflake & 

Tripod ) Operation

2024

✓ 1.5 MA H-mode Operation

✓ H-mode in Tripod Divertor Configuration

✓ High Density Operation (~1.2×nGW)

2025

✓ Ti = 117 million degrees(>10keV)

✓ Te = 160 million degrees(>13keV)

✓ Triple product > 0.67×1020m-3·keV·s

Achievements of HL-3 in 2020-2025
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HL-3

ITER*



Main contents of this talk

III. Integrated 

research• Improved heating,   

diagnostic and control 

• Advanced scenarios 

• Heat/particle control

III. Integrated research
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High-

performance 

plasma 

Power 

exhaust 

solution 

To support ITER and fusion reactors

Core Edge

ITER

HL-3

➢ High 𝑻𝒊

➢ High 𝜷

➢ MHD control

➢ Super H-mode

➢ Small/no ELM

➢ ELM control

➢ Advanced divertor

➢ Detached divertor
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Improvement of heating and current drive systems

13

Heating 2025 2027 

LHCD 2 MW 4 MW 

ICRF / 6 MW

ECRH 5.5 MW 11 MW

NBI 12 MW 20 MW

TOTAL 19.5 MW 41 MW

ECRH

3 MW 105 GHz

2 MW 140GHz

0.5 MW 68GHz 

1# NBI

5 MW

2# NBI

7 MW

LHCD

2 MW 3.7 GHz

NBI

LHCD

ECRH

ICRH 

This conference,Posters 4 B-64, L.F. Lu

TE01 circle WG technology 4×1.5MW ( 25-50 MHz)

6 MW + 7MW + 7 MW

(120 keV/ 40A/ 5s)

140 GHz

105 GHz

68GHz

4MW 3.7GHz

EL：-20~15°NTM control

UL: for CTS

3 systems

1 # (2023), 2#(2025), 3#(2026)
This conference, Poster 2, B-72, B.L. Hao

This conference,Posters 4 B-70, X.Y. Bai



NBI Platforms for R&D

◼ Full-sized ion source commissioning platform and RF negative ion source platform have been 

constructed in Tianfu fusion R&D site

Full-sized commissioning platform
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RF Negative Ion Source platform

(120 keV/ 80A) (3 RF source 400 keV/ 20A)



R&D of VS control for high plasma current operation
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VS1 VS2 VS3

Actuators PF2 PF7 IC

PS Voltage ±2kV ±4kV ±1kV

PS Current ±10kA ±10kA ±4kA

◼ First Vertical Stabilization (VS) control system commissioned

◼ Upgrade：VS2 + in-vessel VS3, control cycle 50~200 𝝁𝒔

✓ A testbed for ITER control to avoid downward VDEs 

✓ Repeatable divertor plasma: 𝐼𝑝 = 1.5𝑀𝐴, 𝑘 ≥ 1.7 with 𝛥Z ≤ 1𝑐𝑚

2023 2025 (VS1)

VS power supply / ±1kV/±4kA

elongation ratio 𝜅 1.5 1.75

plasma current Ip 1.0 MA 1.5 MA

control cycle / 200 μs

control accuracy (𝛥Z) ＞2 cm ＜1 cm

2025 (VS1)

±1kV/±4kA

1.75

1.5 MA

200 μs

＜1 cm

This conference, Posters 5 B-44, X. Song



RL-control for exploration of high parameter discharge
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The Framework of RL Magnetic Control on HL-3

◼ A high-fidelity data-driven simulator is developed to train an AI-controller, which successfully control plasma shape

in real-time on the HL-3 tokamak

➢ Full handover process: RZIP control → RL control (400 ms) → RZIP control

➢ RL control to handle plasma ramp-down and MHD avoidance in high performance discharges

[Wu et al Comm. Phys. 8:393, 2025]



Development of diagnostic systems

Parameter
Diagnostic 

techniques
Channels, Resolution

Te(r), ne(r)

Thomson scattering 60 chs, 30 ms, > 1cm

ECE 60 chs, 5 μs, 1.5 cm

Ti(r)

CXRS 32-64chs, ~1cm, 10-50ms

XICS 32-64chs, ~1cm, 10-50ms

ne, ne(r)

FIR interferometer 13 chs, 1 μs, 10 cm

CO2 dispersion Int. 1 chs, 0.1 ms, line-avg.

Fusion 

product

Scintillation fiber 1 chs，DT n，10 ms

Fission chamber 5 chs, fusion power, 1 ms

ToF 45 chs, 3%@DT n，100ms

◼ More than 50 sets of diagnostic systems deployed on HL-3
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Charge Exchange Recombination Spectroscopy

➢ 64-channel CXRS

✓ Ti/vt profiles

✓ Spatial resolution: 1~2 cm 

✓ Temporal resolution: 20~50 ms

➢ ITER Prototype Contract: Tri-band Spectrometer

✓ Cascaded gratings

✓ simultaneously measure He II, CVI and Dα lines

18

◼ Ion temperature and impurity concentration measurement for core transport research



Thomson scattering system

60-Ch TS system

✓ Core and Edge Thomson scattering for ne and Te profile measurement

✓ High spatial resolution of 1 mm, 60 channels @25 ms, high-efficiency polychromator based on filters

19

◼ High spatial-resolution TS system for core/pedestal distribution in high-performance plasma.



Fusion product and EP diagnostics

◼ Neutron diagnostics such as fission chamber and ToF are upgraded; Other fusion product and energtic 

particle diagnostics are also developed including:  fast ion loss detector (FILD),  imaging neutral particle 

analyzer (INPA), proton detector (PD) and  collective thomson scattering (CTS).

20

FILD

(90-135°，10-40keV，5ms)

INPA 

(0-0.8 a，4-80keV，Δt=5-20 ms)

PD

(5 chan, 0.5-9MeV， 2 ms, )

X.F. He submitted, 2025, NST-2025-0671
X.Y. Han, et al Fusion Engineering and 

Design 221(2025), 115361
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➢ Stepwise co-NBI heating during current ramp-up produced core reversed magnetic shear

➢ Flow shear induced by NBI-momentum, suppressed turbulence and MHD instabilities

➢ Hot ion H-mode achieved with strong ion ITB (Ti =10 keV) and ETB, fusion triple product 0.67×1020 m−3 ·keV·s

22

Approaches to high temperature plasmas 



Ion-ITB formation with magnetic islands

• ITB Formation: Ion-ITB formed @ 2/1 island boundary

• ITB Enhancement:

⇒ 3/2 island developed

⇒ ωE×B @ island boundary ↑ (> ωD）

⇒ turbulence inside boundary ↓↓

⇒ core Ti ↑↑

ITB foot moved inward

◼ Islands → strong E×B shear near island boundary → ion turbulence ↓ → Ti ↑

23



◼ Develop high-β scenarios to benchmark MHD and disruption control technologies.
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High-beta plasma operation

• Hybrid operation: βN > 2.5 sustained for more than 10 times the energy confinement time

• High q95 operation: Achieved double transport barrier operation with βN,max ≈ 3.0 / βp,max ≈ 2.7 with q95 = 8 ~10

• Simulation (MARS-F): High triangularity (especially positive) and elongation of plasma shape
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βN-collapses induced by IKs and NTMs

βN-collapses

◼ MHDs in high beta plasma induces βN-collapses

f = 30.5-32.5 kHz

m/n = 2/2 IK

◼ Plasma parameters:

✓ ne/nG ~ 0.6-0.8, 

✓ κ ~ 1.45, 

✓ δ ~ 0.5, 

✓ q95 ~ 3.7, 

✓ βNmax ~ 3.7, H98 ~ 1.4

f = 17.5-21.5 kHz

m/n = 3/2 NTM

f = 14.1-18 kHz

m/n = 1/1 IKM

f = 3.9-9.2 kHz

m/n = 2/1 IKM

Internal Kink Mode 

Neoclassic

tearing mode

Internal Kink Mode 

Neoclassic

tearing mode

25

This conference, Poster 4 B-60, L.M.Yu



Fast ion losses induced by 2/1 NTM
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 Strong correlation between frequencies of 2/1 NTM rotation and FI loss 

by FILD, suggesting NTM modulates FI losses;

 Loss orbit of trapped particle intersects with island structure, indicating 

fast ions interact with NTM island;

 The linear correlation between FI loss strength and 𝑤2 indicates a 

convective loss mechanism.

◼ Fast ion losses induced by 2/1 NTMs with a convective loss mechanism 
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NTM identified 

by ECE

ECCD injected with 

particular angle
NTM suppressed

• Optimal EC antenna angle scanned; 

• Real-time NTM identification and EC injection achieved, 3/2 NTM island 

shrank and finally suppressed when EC deposited near q=1.5 surface

• Next step: Real-time angle control to suppress multi-modes.

◼ Real-time neoclassical tearing mode (NTM) feedback control by ECCD prelimilary realized

Attempt to Real-time control of NTM

This conference, Poster 5 B-58, X. Yu
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AI control of high beta disruption

◼ Disruption control in high beta operation (βN
> 2.5): Novel disruption prediction strategy

(Predict-First Neural Network, PFNN)

• Novel strategy: predicts parameters evolution first, then to predict plasma disruption

• Significantly enhances the extrapolation capability from low to high parameter spaces (Ip, Bt, q95, WE, βN)

Framework of HL-3 disruption prediction Closed loop disruption prediction and mitigation in Shot 12478

Z.Y. Yang et al Nuclear Fusion 65 (2025) 026030

Alarm threshold

95.5 % accuracy in 22 consecutive high-β shots
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Small / no ELM regimes

◼ Small or no ELM regimes achieved on HL-3, including EDA H-mode, QCE, and QH-mode

➢ Typically accompanied by quasi-coherent modes (for EDA & QCE)

➢ Favorable conditions: High 𝑞95 ​, high plasma triangularity (𝛿)

EDD

30

A. Liang et al 2025 submitted NF-108324



Small / no ELM regimes

◼ Small or no ELM regimes achieved on HL-3, including EDA H-mode, QCE, and QH-mode

➢ QH-mode with EHO was observed in an early stage of H-mode (𝟏. 𝟏 < 𝜷𝑵 < 𝟏. 𝟑, 𝟏. 𝟐 < 𝑯𝟗𝟖,𝒚𝟐 < 𝟏. 𝟑)

➢ The driving role of 𝐸𝑟-curvature (𝐸𝑟
′′) on EHO, with a critical threshold (𝐸𝑟,𝑐𝑟𝑖𝑡

′′ ) is now experimentally confirmed,

supporting the earlier theoretical and numerical predictions.

Y. Zhang et al 2025 submitted NF-108406

EHO’s ෤𝑛𝑒/ത𝑛𝑒 VS 𝐸𝑟-curvature (𝐸𝑟
′′) Critical 𝐸𝑟,max,𝑐𝑟𝑖𝑡

′′ for EHOAppearance of EHO 
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Y. Zhang et al 2020 Phy. Rev. Lett. 125, 255003 Y. Zhang et al 2022 Phys. Plasmas 29, 112101



ELM control by RMP
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◼ RMP coils and power supply were newly installed in HL-3 for ELM control

➢ MARS-F simulation suggests odd parity is optimal

➢ ELM controlled by n = 1 and n = 2 RMPs (odd parity) achieved by scanning Ip (q95).

➢ Incompatible with L-H transition: lower shear rate 𝝎𝑬×𝑩/𝝎𝑫 prevents L-H transition

Y. Zhang et al 2025 Nucl. Fusion 65 066016

This conference , Poster 1 B-51 G.Z. Hao
This conference, Poster 3 B-70, M. Jiang

This conference, Poster 1 B-26, N. Zhang



ELM suppression by LHW
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◼ ELM suppression by LHW, reducing heat load and improving confinement on HL-3

Y.M. Zhang et al 2025 Nucl. Fusion 65 096019

◼ Other actuators such as mixture SMBI also suppressed ELMs

Possible physical process:

LHW heating electrons 

→ edge electrostatic turbulences ↥

→ soften the pedestal gradient

→ wider and flatter pedestal 

→ ELM suppression

This conference, Poster 6 B-57, G.Q. Xue
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◼ Divertor SMBI and SD1D modeling code were developed for fast control and simulation

◼ Detachment feedback control prelimilary realized by real-time measurement of  Jsat

Fast (partially) detachment with divertor SMBI（v>1000m/s）

Y.L. Zhou et al  Plasma Phys. Control. Fusion 67(2025) 055043

Detachment and feedback control techniques

SD1D: Fast simulation of divertor parameters

[G.L. Xiao et al Nucl. Fusion 63(2023) 086017]

EX-3117,  Regular Oral ,  17 Oct.  12:00 G.L. Xiao



Advanced divertor configuration
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◼ Achieved snowflake divertor configuration significantly reduces target heat flux

➢ SOLPS-ITER for SF-(near tripod) simulation:

✓ Enhanced impurity screening

✓ Small magnetic field-line incidence angle

✓ Large flux-surface expansion

➢ Experimentally achieved:

✓ Tripod (longer legs with larger distance 

between two X points

✓ > 4MW heating power

✓ H-mode operation

✓ < 40% of the heat flux peak

SOLPS-ITER 

This conference, Poster 2 B-19, D.M. Fan



Design of an X-point Slot Closed (XSC) divertor

H.L. Du et al Nuclear Fusion 65(2025) 036023

◼ The upper divertor of HL-3 has been designed and optimized based on the lower divertor results

➢ Key features of XSC:

✓ Increase energy dissipation space

✓ V-shaped + a slot : enhance closure

✓ Suppress impurities entering the core

➢ XSC compatible with configurations like SF and negative triangular

36
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Summary and future plan

◼ Significant improvement on heating especially NBI, plasma control (VS, AI

magnetic control) and diagnostics

◼ Significant progress on scenario development towards high-performance

plasmas

✓ Te > 12 keV; Ti > 10 keV; nTi ~ 0.7×1020 m-3·s·keV achieved

✓ High beta operation for MHD and disruption control

◼ Effective effort for power exhaust solution

✓ Small/no ELM operation regime obtained (EDA, QCE, QH) and active control of ELMs

✓ Fast prediction and control method developed as well as RT divertor feedback control

✓ Advanced divertor (snowflake and tripod) configuration achieved

◼ Upgrade to support key physics and technologies towards ITER and beyond

✓ Improve operation capacities to support next step research plan

✓ Enhance understanding of frontier fusion plasma physics

✓ Develop robust technologies for high-performance plasma control



SWIP Research Contributions to IAEA FEC 2025
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Thank you for your attention !

Joint experiments and other 

collaborations are welcome!
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