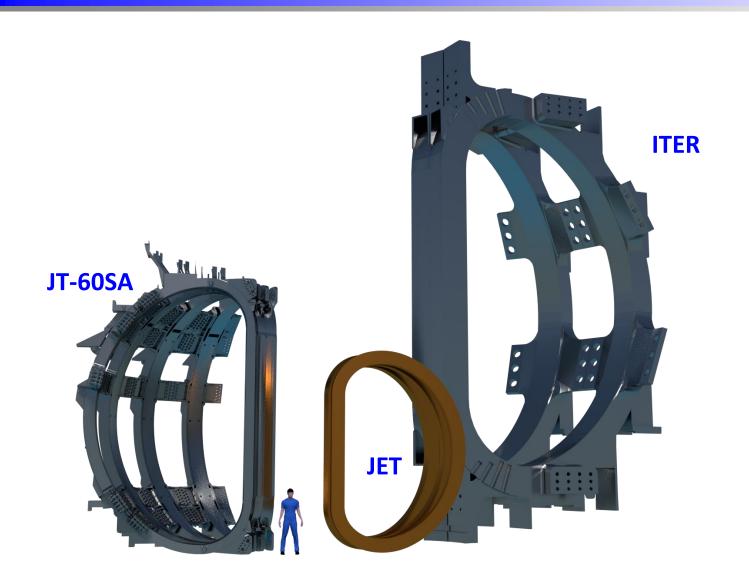


FIRST JT-60SA PLASMA OPERATION AND PLANS IN VIEW OF ITER AND DEMO

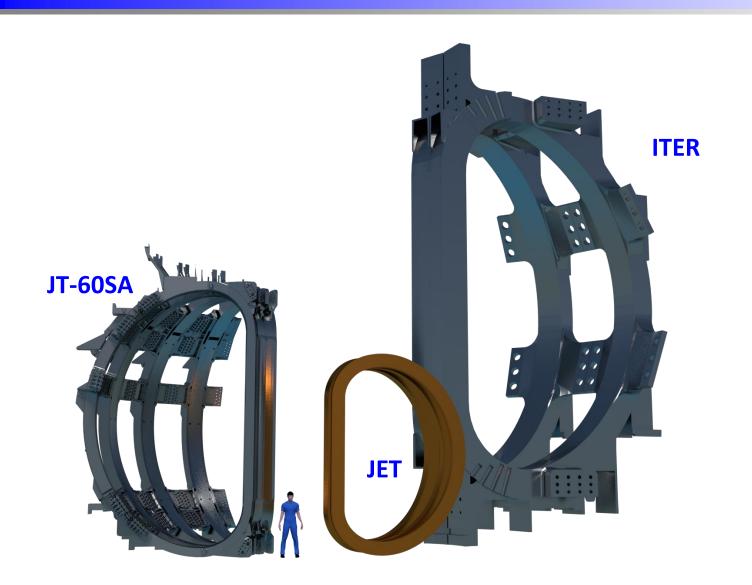
J. Garcia on behalf the JT-60SA integrated project team

Outline

- The JT-60SA tokamak
- Integrated commissioning and OP-1 results
- Status of the JT-60SA project, timeline and scientific priorities
- Preparation for future campaigns
- Conclusions

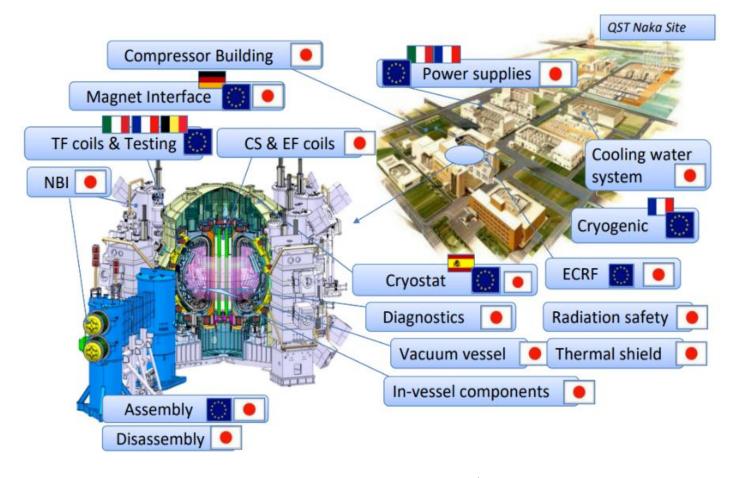


JT-60SA: large step beyond JET towards ITER



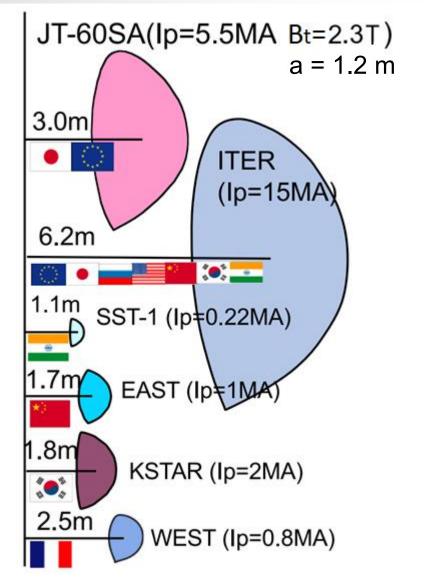
- JT-60SA is the largest tokamak before ITER
- JT-60SA represents an intermediate step between JET and ITER

JT-60SA: large step beyond JET towards DEMO

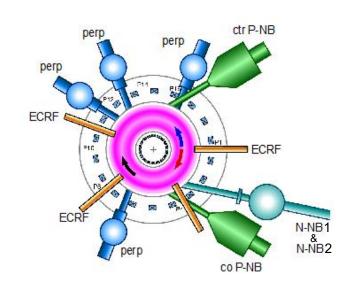

- JT-60SA is the largest tokamak before ITER
- JT-60SA represents an intermediate step between JET and ITER
- Unlike JET, JT-60SA can address long pulse steadystate operation
- Continuous operation is important for DEMO

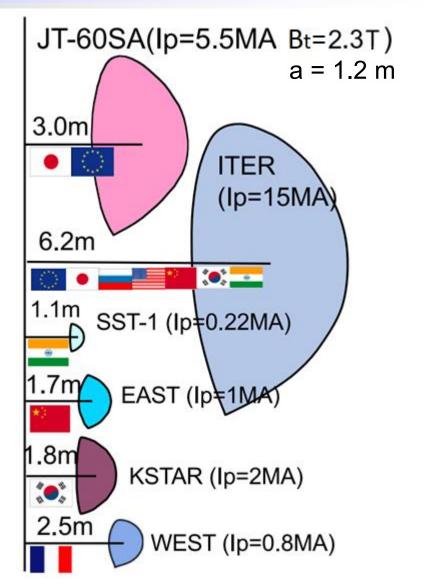
The JT-60SA tokamak: an international platform

 Designed and built jointly by Japan and EU at the Naka site under the Broader Approach agreement


[Y. Kamada, NF 2022] [H. Shirai, NF 2024]

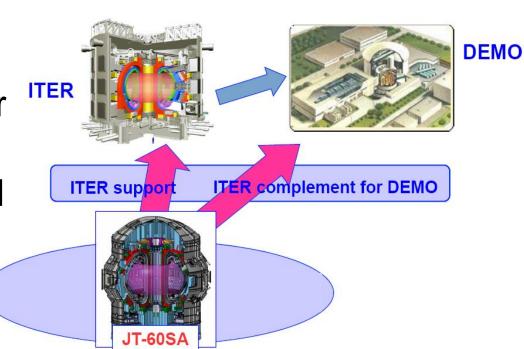
The JT-60SA tokamak configuration


- Designed and built jointly by Japan and EU at the Naka site under the Broader Approach agreement
- Fully superconducting, high current, highly shaped

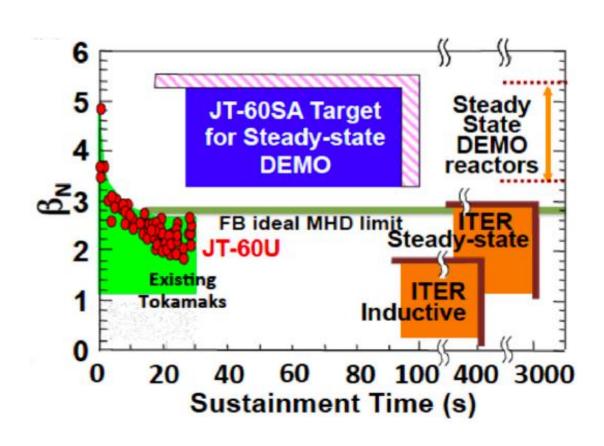


The JT-60SA tokamak configuration

- Designed and built jointly by Japan and EU at the Naka site under the Broader Approach agreement
- Fully superconducting, high current, highly shaped
- High input power flexibility, ECRH (7MW) and NBI (34MW)
- Jointly exploited by Japan and EU

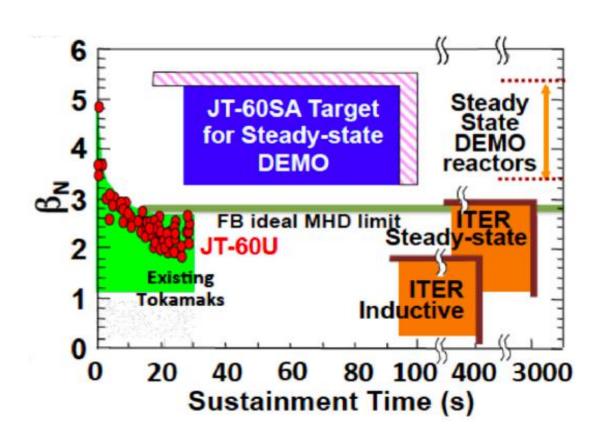


The JT-60SA project objectives



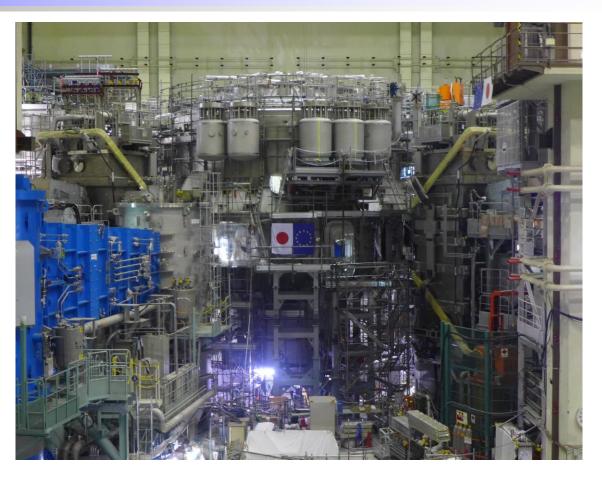
- Contribute to early realization of fusion energy by:
 - > supporting the comissioning, start-up and exploitation of ITER
 - complementing ITER in resolving key issues for DEMO
 - train the next generation of fusion physicists and engineers
- The most important goal of JT-60SA is:
 - > to decide the practically acceptable DEMO plasma design
 - including practical and reliable plasma control schemes

JT-60SA: a scientific and operational challenge



- JT-60SA aims at challenging normalized plasma parameters
 - High: beta, non-inductive current fraction, normalized density, confinement

JT-60SA: a scientific and operational challenge



- JT-60SA aims at challenging normalized plasma parameters
 - High: beta, non-inductive current fraction, normalized density, confinement
- While working at high absolute plasma parameters:
 - lp=5.5MA
 - Peak Thermal Energy ~20MJ
 - Peak DD Neutron rate ~1e17s-1
 - Sustained period ~100s

Outline

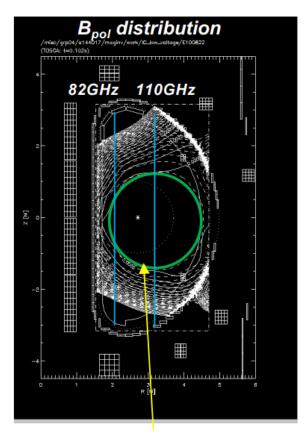
- The JT-60SA tokamak
- Integrated commissioning and OP-1 results
- Status of the JT-60SA project, timeline and scientific priorities
- Preparation for future campaigns
- Conclusions

End of 2023: Integrated comissioning and OP1

Hardware integrated comissioning:

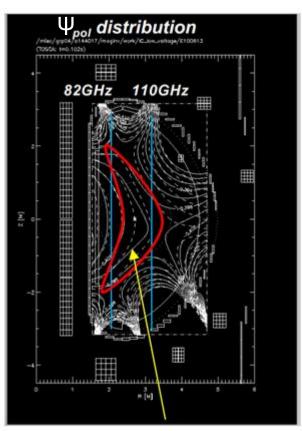
[M. Yoshida, PPCF 2025]

- > Purpose is to commission each sub-system and confirm machine readiness for plasma operation
- ➤ Designed technical requirement is satisfied? each sub-systems works as designed?


• OP1:

- Achieve a MA-class divertor plasma
- > Demonstrate stable plasma control from current-up to ramp-down
- \triangleright Electron Cyclotron Resonance Heating (ECRH) assisted start-up in low parallel electric field (E_{II}) conditions

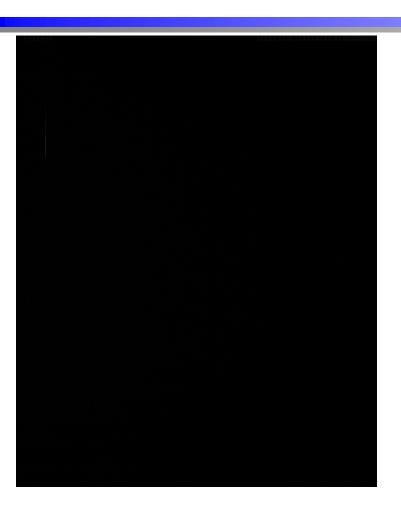
Predict first modeling for first plasma

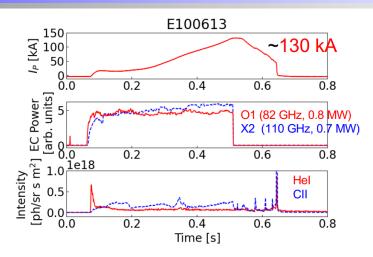


Field Null Configuration (FNC)

Region of $B_{pol} \leq 10G$.

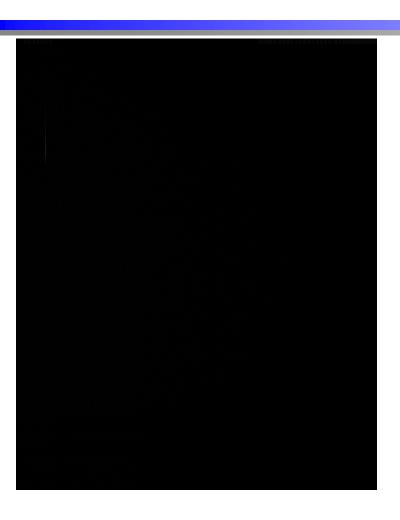
Trapped Particle Configuration (TPC)

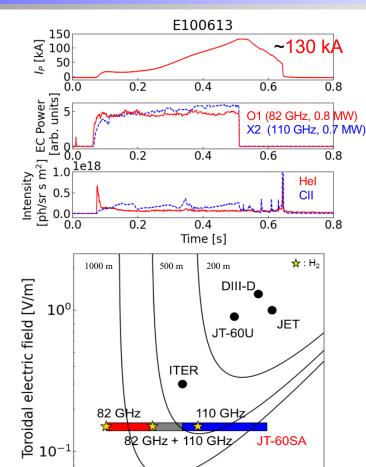



Trapped orbit of electron accelerated perpendicular to B_t by ECRF

 Predict first simulations showed easier start-up with TPC and ECRH

First Plasma Was Obtained on 23rd October 2023





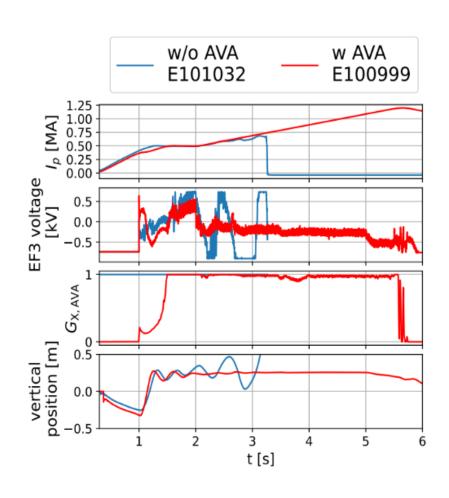
- Predict first simulations showed easier start-up with TPC and ECRH
- After several FNC attempts, first plasma achieved at first trial using TPC

First Plasma Was Obtained on 23rd October 2023

 10^{-3}

Prefill pressure [Pa]

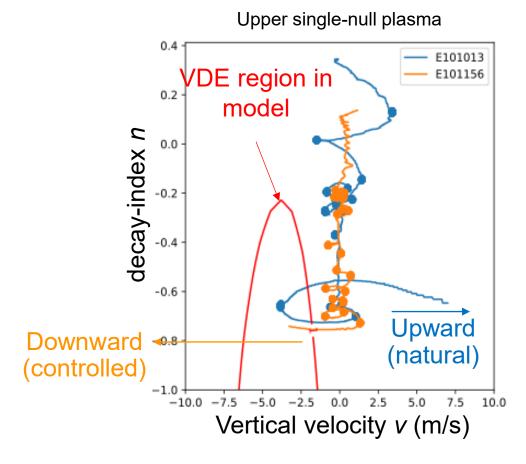
 10^{-4}


10-2

- Predict first simulations showed easier start-up with TPC and ECRH
- After several FNC attempts, first plasma achieved at first trial using TPC

Even lower E_{\parallel} , 0.15 V/m, than expected in ITER \rightarrow Encourage ITER low E_{\parallel} start-up

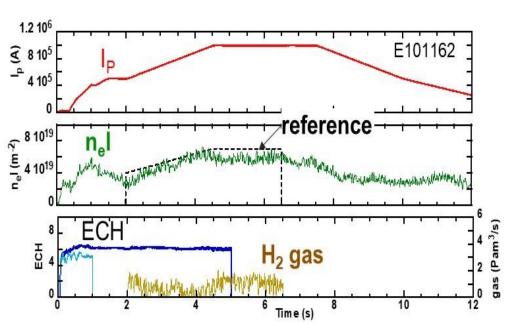
Adaptive voltage allocation (AVA): a key plasma control scheme

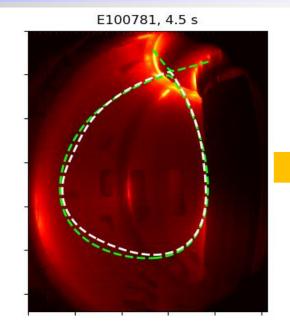


- Potential saturation of poloidal coils voltage found in predict-first simulations
- AVA: adjusts the balance between the position and shape control and the lp control
- Successfully tested during OP-1 with preoptimized gains from the nonlinear simulator MECS
- Importance of predict-first modelling

S. Inoue, EX/7 2898

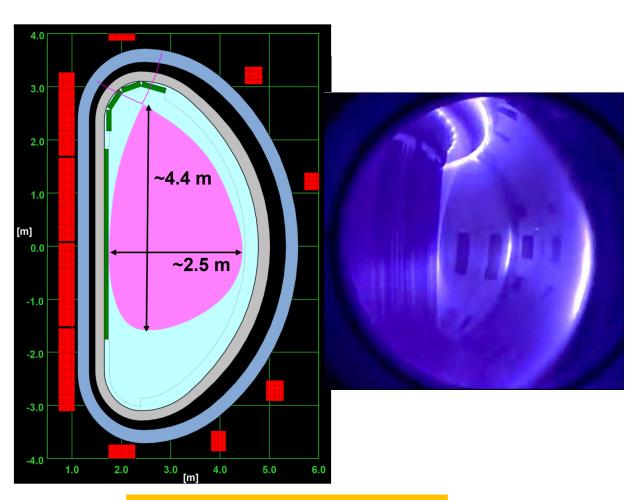
VDE Prediction and Control Scheme Were Demonstrated


[S. Inoue, NF2024]


- VDE predictor and control algorithm were developed using machine learning
 - Vertical velocity v, decay-index n, used for VDE prediction
- Deliberate downward VDE was demonstrated
 - Coil voltage set to 0
 - Machine learning and Al techniques being developed during the start-up with limited input data

Important development for future large superconducting tokamaks → ITER

JT-60SA is a MA class tokamak

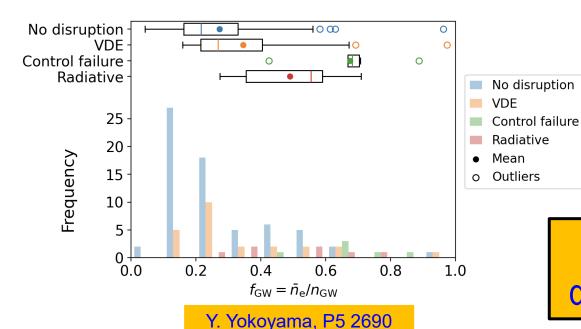

T. Szepesi, P1 2811

[M. Yoshida, PPCF 2025]

- I_P=1 MA is obtained with well controlled diverted plasma in H₂ and optimized breakdown/build up scenario.
- Density feedback control was a success.
- Strike points clearly identified with visible camera EDICAM

Record plasma volume -> going beyond JET

- JT-60SA produces largest plasma volume, 160 m³, beyond JET plasmas, ~100 m³
- Record plasma current up to 1.2 MA in a superconducting tokamak


S. Inoue, EX/7 2898

Classification of the causes for disruptions

 $I_{\rm p} = 0.28 - 1.07 \, \rm MA$

	Total	In flat-top	In ramp-down
Disruptions	82	37	45
VDE	58	24	34
Control failure	8	6	2
Radiative	16	7	9
No disruptions	69	-	-

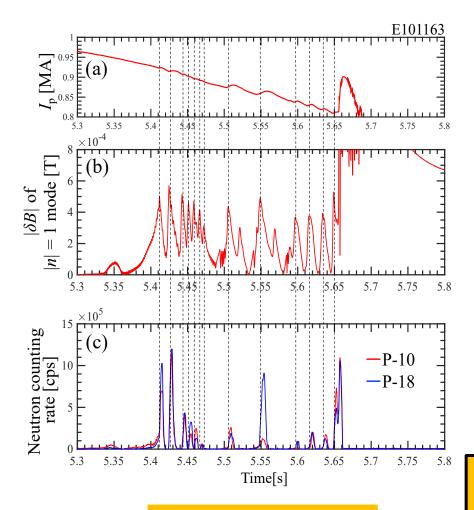
Disruption database has been constructed

VDE: Vertical Displacement Event

at high elongation and/or large gap between plasma surface and wall

Control failure caused by n=1 mode

at relatively high $f_{GW} = n_e/n_{GW}$

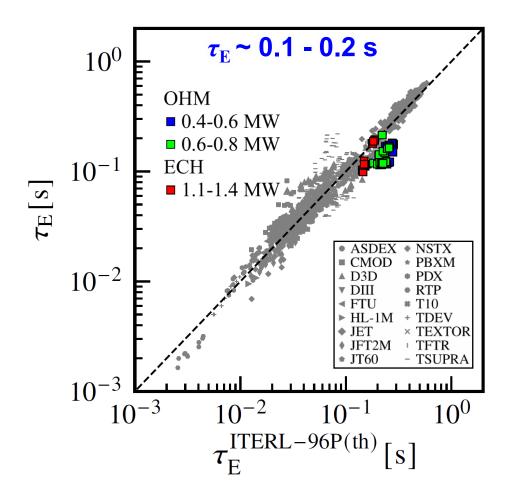

Radiative disruption

imbalance between heating and radiative power when excessive gas injection

JT-60SA data being included in multi machine disruption database → Essential for extrapolations

Focus during OP-1 for Run Away electrons generation > role of MHD

S. Sumida, P5 2692


- Neutron flux monitors (NFMs) are used to indirectly detect the RE loss on PFCs
- Correlation between REs and n=1 MHD activity, caused by tearing modes → Necessity of MHD control even during start-up
- Hard X-Ray (HXR) dosimetry for the evaluation of REs done with visible camera EDICAM

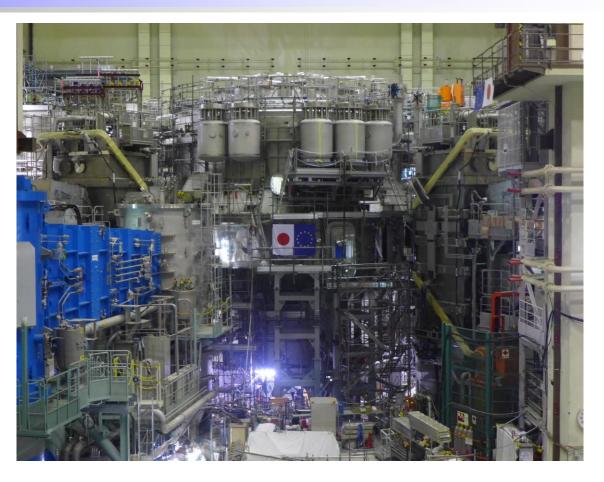
 T. Szepesi, P1 2811

REs generation detected at low E_{||} → mitigation techniques necessary even in the start-up

Plasma energy time confinement during OP-1

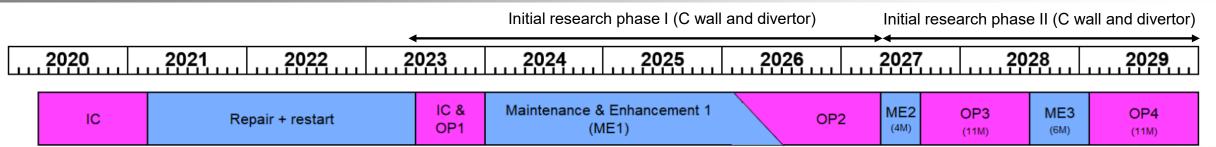
- Energy confinement ~100-200 ms in I_P=1 MA plasmas
 - Consistent with expo. time-decay of $W_{\rm sto}$ ~130ms
 - Generally consistent with the ITERL-96P scaling
 - Dependent on LOC or SOC plasma regime

Initial JT-60SA plasmas show general agreement with expectations from tokamak databases


Y. Ohtani, P1 2851

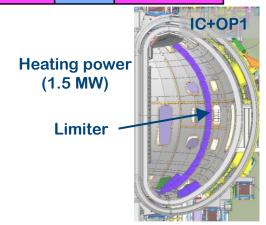
[M. Yoshida, PPCF 2025]

Outline



- The JT-60SA tokamak
- Integrated commissioning and OP-1 results
- Status of the JT-60SA project, timeline and scientific priorities
- Preparation for future campaigns
- Conclusions

Timeline for JT-60SA


- JT-60SA is in a phase of maintenance and enhancement (ME1):
- Input power upgrade:
 - EC: 1.5 MW → 3 MW (82, 110, 138 GHz)
 - NB: 0 MW → 16 MW(H) / 23.5 MW(D): 10 MW of 500 keV negative-ion NBI
 - Lower divertor
 - Several plasma control coils

S. Kojima, P7 2716

- Error Field Correction coil (EFCC), Resistive Wall Mode coil (RWMC), First Plasma Position Control coil (FPPCC)
- Upgraded Diagnostics (Thomson Scattering, ECE, CXRS, etc...)

C. Sozzi, P6 2827

- Massive gas injection for disruption mitigation
 - Stabilizing plate : CuCrZr heat sink + Carbon tiles
 - Transition from ME1 to OP2 in 2026

Oil (19/26.5MW)

MGI

Graphite tiles

Stabilizing plate

Lower divertor

Cryopump

Heating power

JT-60SA scientific priorities in the initial phase

Initial research phase I & II (C inertial divertor and C wall)

Integrated research phase (W actively cooled divertor and W wall)

Disruption mitigation and avoidance at high current in H-mode

Heat load to divertor mitigation

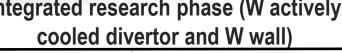
High beta plasmas compatible with radiative divertor

$OP3 (P_{in} = 26.5MW)$

High confinement H-mode plasmas at high current including ELM control

Physics of energetic particles

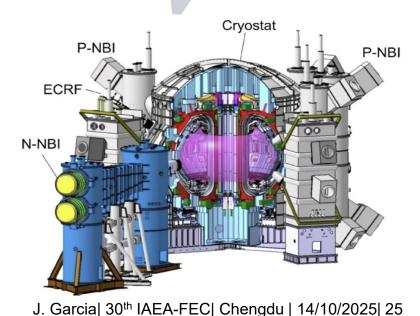
Study of high beta plasmas



$OP2 (P_{in} = 26.5MW)$

Stable operation at high current heated plasma

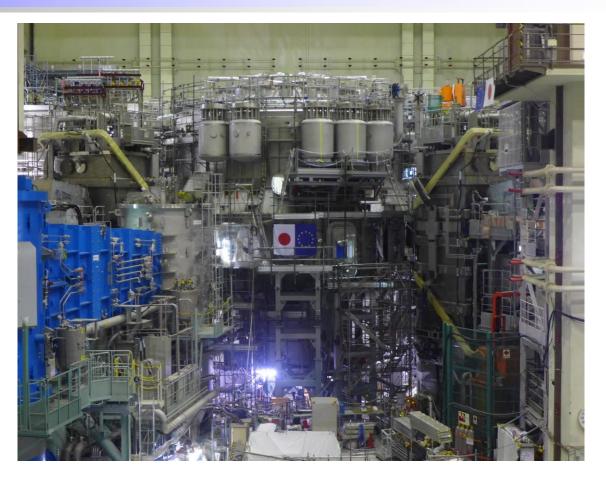
H-mode access


First high beta plasma attempt

OP5- (P_{in}=41MW)

in W environment

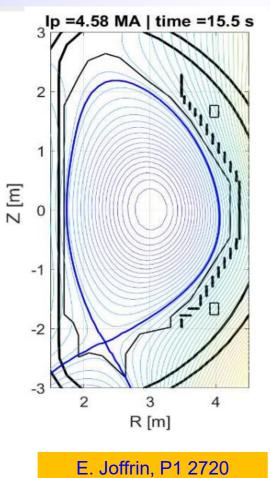
Long pulse operation



Including scientific and operation preparation for the W phase

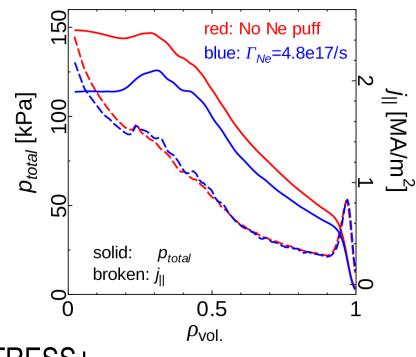
Outline

- The JT-60SA tokamak
- Integrated commissioning and OP-1 results
- Status of the JT-60SA project, timeline and scientific priorities
- Preparation for future campaigns
- Conclusions



Scenario preparation for OP2

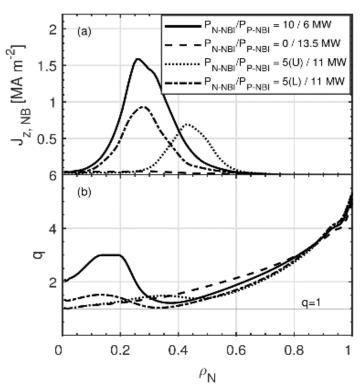
	Ip/Bt (q ₉₅)	β_{N}/β_{p}
Baseline	4.6 MA/2.28 T (q ₉₅ ~ 3)	~1.8/<1
Hybrid	2.7 MA/1.70 T (q ₉₅ ~ 4)	~ 2-3/~1
Internal Transport Barrier	1.7-2.0 MA/1.70 T (q ₉₅ > 6)	> 3.5/>>1


- Three typical scenarios for OP2 have been investigated
- New pulse design simulator being developed

Scenario preparation for OP2

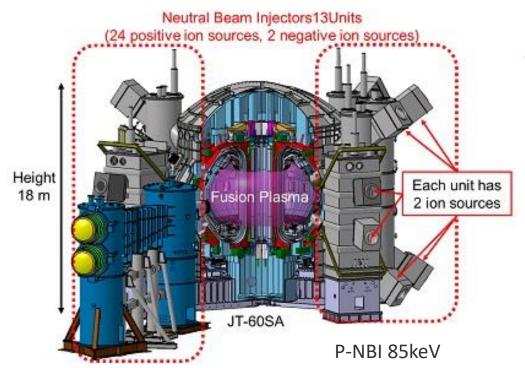
	Ip/Bt (q ₉₅)	β_{N}/β_{p}
Baseline	4.6 MA/2.28 T (q ₉₅ ~ 3)	~1.8/<1
Hybrid	2.7 MA/1.70 T (q ₉₅ ~ 4)	~ 2-3/~1
Internal Transport Barrier	1.7-2.0 MA/1.70 T (q ₉₅ > 6)	> 3.5/>>1

- Three typical scenarios for OP2 have been investigated
- SOL-PEDESTAL-CORE integrated simulations performed with GOTRESS+
- Target scenarios are possible with OP2 conditions
- Control of heat flux q_{flux}<~10MW/m² to divertor can be obtained with impurity injection


N. Aiba, TH/4 2890

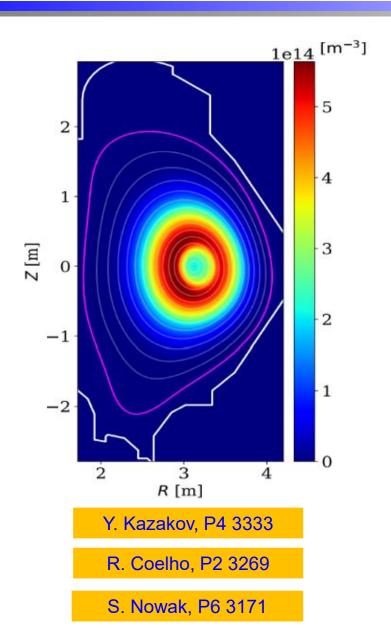
Scenario preparation for OP2

	Ip/Bt (q ₉₅)	β_{N}/β_{p}
Baseline	4.6 MA/2.28 T (q ₉₅ ~ 3)	~1.8/<1
Hybrid	2.7 MA/1.70 T (q ₉₅ ~ 4)	~ 2-3/~1
Internal Transport Barrier	1.7-2.0 MA/1.70 T (q ₉₅ > 6)	> 3.5/>>1


- Three typical scenarios for OP2 have been investigated
- JINTRAC simulations show strong impact of N-NBI current drive on q profile
- Flexibility for tailoring of the q profile with ECCD and NBI

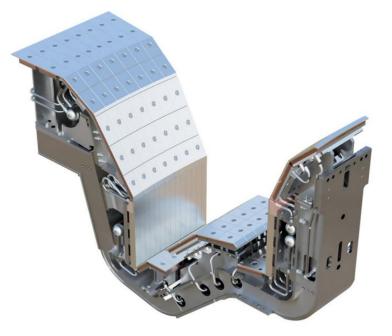
[S. Gabriellini, NF 2025]

Fast ions studies possible with N-NBI



- Fast ion physics studies area a priority with N-NBI at 500keV and P-NBI 85keV
- Interaction between fast ion driven modes and turbulence found [A. Jantchenko, NF 2024]

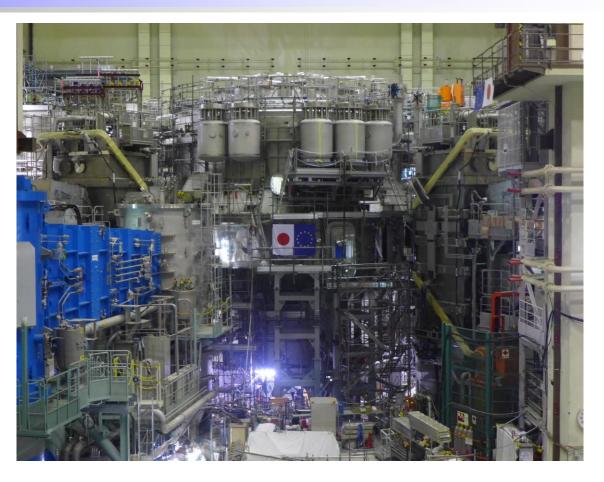
α particle physics studies with ³He plasmas



- Fast ion physics studies area a priority with N-NBI at 500keV and P-NBI 85keV
- Interaction between fast ion driven modes and turbulence found [A. Iantchenko, NF 2024]
- α particle physics can be studied with N-NBI injection
- $D_{beam}^{+3}He \rightarrow {}^{4}He (3.6MeV) + p (14.7 MeV),$ which has its maximum cross-section close to 500keV for fast D
- Significant off-axis α particle production in reversed q profile > interplay between α and **MHD**

Transition to W PFCs

- Long pulse operation will be carried out in the integrated research phase with W PFCs→ ITER support and DEMO design
- Tungsten divertor under development
 - Monoblocks for inner and outer vertical targets
 - Solid tungsten bolted tiles elsewhere
- Design starting for first wall
- Predict first modelling ongoing for assessing:
 - optimized divertor design M. Richou, TEC/2 3023 [G. Rubino, EPS 2024]
 - additional ECRH heating and W screening [C. Angioni in preparation]
 - boronization system
 - additional diagnostics



Outline

- The JT-60SA tokamak
- Integrated commissioning and OP-1 results
- Status of the JT-60SA project, timeline and scientific priorities
- Preparation for future campaigns
- Conclusions

Conclusions

- JT-60SA was jointly constructed and is jointly funded and exploited by Japan and EURATOM
- First plasma was achieved in 2023
- OP1 has demonstrated the importance of predict first and machine learning activities even for start-up phase
- Now implementing major enhancements to in-vessel components, heating systems & plasma diagnostics
- Operation restarts in 2026 targeting high plasma current and H-mode
- Experimental programme being developed by the Experiment Team
- Aim to transition to a tungsten environment in time to provide results to support ITER and DEMO in the early 2030s

JT-60SA contributions in the 30th IAEA-FEC

DISRUPTIONS AND MHD INSTABILITIES OBSERVED IN THE INITIAL OPERATION PHASE OF JT-60SA T. YOKOYAMA P5 2690

CHARACTERISTICS OF RUNAWAY ELECTRON LOSS IN THE INTEGRATED COMMISSIONING OF JT-60SA S. SUMIDA P5 2692

CONFINEMENT PROPERTY IN THE JT-60SA PLASMA IN THE FIRST OPERATIONAL PHASE Y. OHTANI P1 2851

DEVELOPMENT OF EQUILIBRIUM CONTROL SIMULATOR AND EXPERIMENTAL DEMONSTRATION OF ADVANCED ISO-FLUX EQUILIBRIUM CONTROL DURING THE FIRST OPERATIONAL PHASE OF JT-60SA S. INOUE EX/7 2898

H-MODE OPERATION SCENARIOS IN JT-60SA INITIAL RESEARCH PHASE PREDICTED BY INTEGRATED CORE-PEDESTAL-SOL/DIVERTOR SIMULATION N. AIBA TH/4 2890

MECHANISMS OF WALL CONDITIONING PLASMA PRODUCTION USING FUNDAMENTAL AND SECOND HARMONIC ELECTRON CYCLOTRON WAVES IN JT-60SA M. FUKUMOTO P7 2839

OPTIMAL DESIGN OF FAST PLASMA BOUNDARY CONTROL CONSIDERING VERTICAL INSTABILITY FEATURES USING IN-VESSEL COILS IN JT-60SA S. KOJIMA P7 2716

INVESTIGATION OF PLASMA PARAMETERS IN SAWTOOTH OSCILLATION BY ABSOLUTE INTENSITY OF SOFT X-RAY EMISSION IN JT-60SA INTEGRATED COMMISSIONING PHASE R. SANO P1 2793

MACHINE ENHANCEMENT OF TOKAMAK DEVICE FOR THE JT-60SA NEXT OPERATION H. KAYANO P6 2835

DEVELOPMENT OF LOW INDUCTIVE ELECTRIC FIELD PLASMA START-UP IN JT-60SA W. TAKUMA EX/7 2689

EFFECT OF COLLISION PROCESSES IN DIVERTOR PLASMAS ON THE TOKAMAK OPERATIONAL WINDOW D. UMEZAKI P5 2801

IMPROVEMENTS OF MAGNET POWER SUPPLY SYSTEM AND ACHIEVEMENTS IN COIL ENERGIZATION TESTS FOR FIRST PLASMA OF JT-60SA K. YAMAUCHI P7 3043

RESULTS OF ELECTRON CYCLOTRON HEATING AND CURRENT DRIVE SYSTEM OPERATION IN THE INTEGRATED COMMISSIONING PHASE ON JT-60SA H. YAMAZAKI TEC/5 IAC/1

PERFORMANCE OF JT-60SA SUPERCONDUCTING MAGNET OPERATION IN INTEGRATED COMMISSIONING TEST K. TSUCHIYA TEC/5 IAC/1

RECENT PROGRESS OF DISSIMILAR MATERIAL BONDING TECHNIQUE WITH SPARK PLASMA SINTERING METHOD FOR HIGH HEAT LOAD PLASMA FACING COMPONENTS IN REACTOR-RELEVANT DEVICES T.

MORISAKI P7 3127

WORISARIFI 3121

OVERVIEW OF THE EUROPEAN CONTRIBUTION TO THE DIAGNOSTIC EQUIPMENT OF JT-60SA FOR THE NEXT OPERATIONAL PHASES C. SOZZI P6 2827

ALPHA PARTICLE GENERATION AND CONFINEMENT IN D-3HE SCENARIOS IN JT-60SA R. COELHO P2 3269

INSIGHTS FROM FAST-ION PHYSICS STUDIES ON JET IN SUPPORT OF JT-60SA AND ITER REBASELINE Y. KAZAKOV P4 3333

SAWTEETH DYNAMICS IN JT-60SA BASELINE SCENARIOS WITH EFFECTS ON NTM ONSET S. NOWAK P6 3171

UTILIZING A VISIBLE CAMERA IN THE FIRST OPERATION PHASE(S) OF A FUSION DEVICE T. SZEPESI P1 2811

PULSE DESIGN SIMULATOR FOR JT-60SA E. JOFFRIN P1 2720

ACTIVELY COOLED PLASMA FACING COMPONENTS DESIGN FOR W7X AND JT-60SA IN SUPPORT OF THE ITER DIVERTOR M. RICHOU TEC/2 3023

INTRA-SHOT TOOLS FOR PLASMA SCENARIO OPTIMIZATION AND MAGNETIC CONTROL M. MATTEI P6 2757

J. Garcial 30th IAEA-FEC| Chengdu | 14/10/2025| 35

