

Rami El-Emam

Outlines!

- Introduction
- Nuclear Cogen: Technologies & Status
- Assessment Tools on Non-Electric Applications

NUCLEAR POWER TODAY

Nuclear Power Today

Total Number of Operating Reactors today is **440** reactor with total net electrical capacity of **390,000 MWe.**

This is 10% of Global Electricity Production

Nuclear Power Today

Total Number of Operating Reactors today is **440** reactor with total net electrical capacity of **390,000 MWe**.

Second Low-Carbon Power Source (~30%)

NUCLEAR ENERGY & CLIMATE CHANGE

Role in Climate Change Mitigation

Nuclear Cogeneration & SDGs

POWER of TODAY's NUCLEAR POWER

more than 7 0 0, 0 0 0 M W (th) heat wasted from today's operating reactors

Role in Climate Change Mitigation

Waste heat from these reactors is 700,000 ~ 1,000,000 MW(th)!!

Assume: ~ 25% recovery of waste heat

This is equivalent to daily reduction of 1 - 2 Million tonnes of CO₂ emissions

Based on the type of fossil fuel would be used to cover this thermal demand

Equivalent cars taken off roads in a year when nuclear waste heat is recovered to replace carbon-based heat applications

ROADMAP OF NUCLEAR ENERGY INNOVATIONS

STATUS OF NUCLEAR COGENERATION

• Nuclear cogeneration is a well proven technology with over 750 reactor years of operation in different applications.

• About 15% of the currently operating nuclear power plants are used to supply heat

POTENTIAL OF NUCLEAR COGENERATION

Nuclear potential is in penetrating **Transportation** and **Heat** (industrial and buildings) sectors using Nuclear Cogeneration of Power and Heat

The share of electricity used in **transportation** doubles between <u>2015 and 2040</u> as more plug-in electric vehicles enter the fleet and electricity use for rail expands

The industrial sector includes mining, manufacturing, agriculture, and construction The buildings sector includes commercial and residential structures (electricity, heating,..)

Status of Nuclear Cogeneration

Experience on Nuclear Desalination

Plant name	Location	Gross power MW(e)	Water capacity [m ³ /d]	Reactor type/ Desal. process
Shevchenko	Kazakhstan	150	80000 – 145000	FBR/MSF&MED
lkata-1,2	Japan	566	2000	LWR/MSF
lkata-3	Japan	890	2000	LWR/RO
Ohi-1,2	Japan	2 x 1175	3900	LWR/MSF
Ohi-3,4	Japan	1 x 1180	2600	LWR/RO
Genkai-4	Japan	1180	1000	LWR/RO
Genkai-3,4	Japan	2 x 1180	1000	LWR/MED
Takahama-3,4	Japan	2 x 870	1000	LWR/RO
Diablo Canyon	USA	2 x 1100	2180	LWR/RO
NDDP	India	2 x 170	1800	PHWR/RO
Karachi	Pakistan	175	1600	MED

GHG Emissions for *Nuclear Desalination*

Nuclear Hydrogen Production

Current nuclear reactors:

- Low-temperature electrolysis
- Off-peak power or intermittent
- HTSE

Future nuclear reactors:

- Thermochemical/hybrid thermochemical cycles,

efficiency (up to 95%)

- ✓ Sulfur- Iodine cycle.
- ✓ Sulfur-Bromine hybrid Cycle cycle
- ✓ Copper Chlorine cycle
- ✓ etc

Maximum temperatures and theoretical electrical energy requirements of selected hydrogen production methods

advanced nuclear reactor (Gen-IV) for Hydrogen Production

	GEN IV - Advanced Nuclear Technologies							
	_		SCWR	VHTR	SFR	GFR	MSR	LFR
s	Cor	e outlet temperature °C	500 ~ 625	750~ 950	450 ~ 550	750 ~ 850	650 ~ 850	450 ~ 800
ion	Effic	ciency (electric based) %	44 ~ 48	40 ~ 50	38~42	45 ~ 48	45 ~ 55	42 ~ 45
icat	The	rmodynamic power cycle						
ecif		Brayton Cycle	-	He	S-CO ₂	He	He	S-CO ₂
Sp		Rankine Cycle	Steam	Steam	Steam	-	-	Steam
	Elec	ctrolysis						
ies		PEM electrolysis (<100°C)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ologi		Alkaline electrolysis (~200°C)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
lechn		High temp electrolysis (> 800°C)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
L no	The	rmochemical/Hybrid Cycles					· · · · · ·	
ducti		Sulfur lodine (> 800°C)	-	\checkmark	-	\checkmark	-	-
Proc		Hybrid Sulfur (> 800°C)	-	\checkmark	-	\checkmark	-	-
gen		Copper Chlorine (> 600°C)	\checkmark	\checkmark	-	\checkmark	\checkmark	-
dro	Car	bon Based Thermochemical						
Η		Steam methane reforming (> 700°C)	-	\checkmark	-	~	\checkmark	-
		Coal/Biomass gasification (> 650°C)	\checkmark	\checkmark	-	\checkmark	\checkmark	-
		SCWR: Super Critical Water Reactor	GFR : Gas co	oled Fast React	or			
		VHTR: Very High Temperature Reactor	MSR: Molte	n Salt Reactor				

SFR: Sodium cooled Fast Reactor

LFR: Lead cooled Fast Reactor

Nuclear Hydrogen Production

90 v/o H₂O + 10 v/o H₂

Porous Anode

coupling nuclear and hydrogen generation plants would serve in reducing the carbon emissions accompanied with the currently fossilpowered steam methane reforming hydrogen plants.

PEM electrolysis

Alkaline Electrolyser

high-temperature steam electrolysis

Nuclear Hydrogen Production

Driving Forces:

- Replacement of **CO**₂ emitting fossil fuels
- Saving of resources by 30-40%
- Securing energy supply by reducing dependency on foreign oil uncertainties

Emissions from Nuclear Hydrogen Production! 45

Cogeneration for District Heating

- Heat recovery enhances the plant efficiency and provides a high energetic gain (+70%)
- Nuclear heat recovery allows large reduction in CO2 emissions
- Heat transport line can reach long distances (> 100 km)

Recent developments in piping insulation allows transfer of heat for 100 km with only ~ 2% heat loss of the transported power

Cogeneration for District Heating

Heat from NPPs – a contribution to the solution of the CO₂ problem?

Switzerland

Example REFUNA (70 MW_{th}/140GWh_{th}):

- 10 Mio. liter heating oil per year
- savings of more than 26'500 t CO₂
- equivalent to the CO₂ emissions of about 12'000 cars every year

Finland

@Fortum

District heat transport system

- Distance over 75 km (Loviisa eastern Helsinki)
 - 2 x Ø 1200 mm pipes, PN25 bar, Q = 4 5 m³/s
 - 4 7 pumping stations
 - · total pumping power needed tens of MWs
 - compensates for heat losses
 - Control scheme

22 October 2010

- · district heat water temperature or flow rate
- Heat accumulator needed, heat distribution to the local district heat network via heat exchangers

28

Russian Federations

Harri Tuomisto

NPP	Thermal Power, MW	Electric Power, MW	Heating capacity, MW
Beloyarskaya	1 470	600	260
Balakovskaya	12 000	4 000	920
Volgodonskaya	6 000	2 000	460
Novovoronezhskaya	5 750	1 880	250
Kurskaya	12 800	4 000	700
Smolenskaya	9 600	3 000	520
Kalininskaya	9 000	3 000	420
Leningradskaya	12 800	4 000	700
Kolskaya	5 500	1 760	145
Bilibinskaya	248	48	90

IAEA Tools and Toolkits on Cogeneration and Non-Electric Applications of Nuclear Energy

- Desalination Economic Evaluation Programme
- Desalination Thermodynamic Optimization Programme
- Hydrogen Economic Evaluation Programme
- Nuclear Desalination Toolkit
- Nuclear Hydrogen Production Toolkit

DEEP performance and cost evaluation of various power and seawater desalination cogeneration configurations.

Desalination Economic Evaluation Programme

DEEP

DE-TOP

models the steam power cycle of different WCRs coupled with nonelectrical applications

		R		esalination [•]	Thermoc	DE-T(Iynamic Optimization Prog)P _{gram}		
HP TURSNE			50	DE-TOP	POWE	R AND DESALINATIO	IN		DE-TOP Non-Electric Applications
						Power pl	lantsimulat	ion Coupling	configuration Home
27.9 34.5 🥥 🖽		MAIN PARAMETERS	DUAL PURPOSE	SINGLE PURPOSE				15.00 ¹ NA	
		Gross Efficiency	49.9%	49.9%	%	60.00 276	7	845 101	
		Net Efficiency	47.4%	47.4%	%	285.00 NA 3461 391			
		THERMAL UTILIZATION	47.4%	47.4%	76	HP THERE	60.00: 276		
Step 1	Step 2	Heat rate	7,201	7,201	Btu/kWh		2785 316		
DOWER DI ANT		HEAT RATE	7,598	7,598	kJ/kWh	285.00 NA 3461 : 492	LA	<u></u>	
POWER PLANT	NON ELECTR	PLANT PERFORMANCE PARAMETERS						~	2299 235
Define the power plant (fossil fuel power	Define the non e	HEAT INPUT	DUALFURFUSE	SINGLE FORFOSE	-	13.00 845	39	15.00 NA 845 101	2.00 120 96 24365
plants or water cooled reactors) from user	retrofitted to the	Heat input steam generator	1,032,750	1,032,750	MW(th)	STEAM	-		
plants of water cooled reactors) from user	retrontted to the	Heat input reheater (Nuclear)	265	265	MW(th)	GEN 60.00 2 9097 7	76 15.00 208	5.60 156 2.50 12	1.00 100 COND
values or predefined cases.		Heat input reheater (fossil)			MW(th)	49.57.302	3219 22	2996 15 2831 1	
		GROSS POWER OUTPUT	515.1	515.1	MW(e)			ЬЬ	2462 12 V 0.00 13
Define power plant	Define No	Low pressure turbine output	371.4	371.4	MW			3.0 3.0	250 130 520 130 235
		Total Mechanical Output	525.6	525.6	MW	89.57 303 89.57 503	60.00 276 15.0	198 5.80 158 2	50 127 1.00 100 0.20 60
						AD14 474 AD14 404	1011 (101) (101)		· · · · · · · · · · · · · · · · · · ·
		AUXILIARY LOADS	25.8	25.8	MW(e)	COURIED DESAUNATION PLANT	r		
		Condensate water pump	12.1	12.1		COOPLED DESALINATION PLANT			
		Cooling water pump	2.9	2.9		DESALINATION TECHNOLOGY M	ED TVC		WATER PRODUCTION
		Other auxiliary loads	10.4	10.4		Max brine Temperature	115	*c	
						TDS	20	ppm	0 m3/day
		NET OUTPUT	489.3	489.3	MW(e)	GOR Number of Stager	51.2	[-]	0 1110/ 444
		HEAT REJECTED CONDENSER	507	507	MW(th)	Number of Stages Cooling water temperature	32	1-J *C	TOTAL POWER REQUIREMENTS
		HOST RECEIVED CONDENSER	307	307	(ai)	DESALINATION PLANT CONSUMPTION	23		101AL FORTER ACTOR EMENTS
		MASS BALANCE	DUAL PURPOSE	SINGLE PURPOSE		Heat to desalination		MW(th)	6 1 MIN(-)
					-	Power lost due to extraction	12	MW(e)	b.1 WW(e)
		LIVE STEAM FLOW	491.9	491.9	kg/s	Desal. electric cons.	8	MW(e)	
		Live steam to reheater	101.4	101.4	kg/s	Total specific cons.	6.12	KWh(e)/m3	
		Steam inlet to High Pressure Turbine	390.6	390.6	kg/s	WITTON FOLINE LOOP			POWER LOST RATIO
		High Pressure turbine exhaust Moisture senarator condensate	277.2	277.2	kg/s	IN TERMEDIATE LOOP	125.5	10	
		Steam inlet to Low Pressure turbine	(39.0)	(39.0)	kg/s	IL condenser return temp	123.5	°C	#DIV/0!
		Low Pressure turbine exhaust	234.7	234.7	kg/s	IL mass flow		kg/s	
						Il oumping power		MW(e)	

Desalination Thermodynamic Optimization

DE-TOP

68

12

9.6

13.1

1.7

0.3

0.0

COGENERATION PLANT

Net power output [MW(e)]	130
Reference plant net output		132
	Var.	-196
Water production [m3/d]		4,642
Cogeneration plant eff.		33.1%
Reference plant efficiency		30.4%
	Var.	9%

DESALINATION PLANT Plant specifications Desalination technology MED Max brine Temperature [°C] Number of effects [-] GOR [-] Energy use Heat to desalination [MW(th)] Power lost due to extract [MW(e)] [MW(e)] Desal, electric cons. Int. Loop electric cons. [MW(e)] Equiv. specific cons [KWh(e)/m3] 10.36

COUPLING OPTIMIZATION

Power lost ratio 12.9%								
Optimize steam extraction flows for:								
Current size	Design size							
Modify Desalination parameters								

Facilities to be considered for evaluation Image: Construction of the considered for evaluation Image: Construction of the constend of the construction of the construction of the con	
Nuclear Power Plant Details Help (?) Hydrogen Genearation Plant Details Help (?) Hydrogen Storage Details Help (?) Use library Create new data NPP Database Help (?) Use library Create new data Database List of nuclear plant files in the library Add. FWR-Cucl SCWR-Cucl SCWR-Cucl List of nuclear files in the library Database List of Hudrogen files in the library Database List of Hudrogen files in the library Use library Create new data Database APWR360 - Code of Hudrogen files in the library Code of Hudrogen files in the library Database List of Hudrogen files in the library Use library File direct files in the library Database List of H2 storage files in the library Use library File direct file d	
Parameter Value Add. data Location of H2 Generation Plant © Co-located © Away from NPP H2 Storage Method © Compressed Gas Liquefaction Type of H2 Transportation Thermal rating (MWth/unit) 3385 Edit Heat for H2 plant (MWth/unit) © Edit Technicity rating (MWek/unit) Parameter Value Add. data H2 Storage Method © Metal Hydrides Pipe © Vehicle Bectricity rating (MWek/unit) 0 Edit Tumber of units Parameter Value Add. data Parameter Value Add. data Parameter Value Add. data Parameter Value Value Add. data Parameter Value Value Add. data Parameter Value Value Add. data Parameter Value Value </th <th>Jelp (?) Jpdate H2T vatabase</th>	Jelp (?) Jpdate H2T vatabase
Themal rating (MW/th/unit) 3385 Edid Heat for H2 plant (MW/th/unit) 0 Edid Heat for H2 plant (MW/th/unit) 0 Edid Mumber of units 2 Edid Number of units 2 Edid Initial fuel load (kg/unit) 75000 Edid Number of units 252E+08 Edid Number of units 2 Edid Number of units 1438 Edid Number of units 1 Edid Overnight Capital cost(USD/unit) 59E+8 Edid Edid Edid Overnight Capital cost(USD/unit) 8.45E+8 Edid Edid Edid Overnight Capital cost(USD/unit) 8.45E+8 Edid Edid Overnight Capital cost(USD/unit) 8.45E+8 Edid Edid Edid Edid Edid Edid Edid Edid Edid	
Heat for H2 plant (MW/h/unit) 0 E dit Farameter Value data Electricity rating (MW/c/unit) 1117.05 E dit H2 generation per unit (kg/yr) 2.52E+08 E dit Parameter Value Add. Parameter Value Number of units 2 E dit Heat consumption (MW/th/unit) 0 E dit Storage capacity (kg) 4.83E+6 E dit Distance for transport (km) 2000 Number of units 25000 E dit Number of units 1 E dit E lectricity required (MW/e/unit) 18 8 E dit Compressor cooling water (Lit/h1) 1.50E+6 E dit Distance for transport (km) 2000 Number of units 1 E dit E dit Devright Capital cost(USD/unit) 8.45E+8 E dit Divernight Capital cost(USD/unit) 0.98E+8 E dit	,
Electricity rating (MWe/unit) 1117.05 Edit H2 generation per unit (kg/yr) 2.52E+08 Edit Parameter Value Adat Parameter Value Number of units 2 Edit Heat consumption (MVth/unit) 0 Edit Storage capacity (kg) 4.83E+6 Edit Distance for transport (km) 200 Number of units 25000 Edit Number of units 1 Edit Edit Compressor cooling water (Lit/hr) 1.50E+6 Edit Distance for transport (km) 200 Number of units 1 Edit Edit Number of units 1 Edit Edit Overnight Capital cost(USD/unit) 0.50E+6 Edit Distance for transport (km) 200 Nemight Capital cost(USD/unit) 5.96E+8 Edit Overnight Capital cost(USD/unit) 8.45E+8 Edit Edit Edit Distance for transport (km) 200	Add
Number of units 2 Edit Heat consumption (MVMth/unit) 0 Edit Storage capacity (kg) 4.83E+6 Edit Distance for transport (km) 200 minial fuel load (kg/unit) 75000 Edit Number of units 1 Edit Compressor cooling water (Lit/hr) 1.50E+6 Edit Distance for transport (km) 200 numual fuel feed (kg/unit) 25000 Edit Number of units 1 Edit Compressor cooling water (Lit/hr) 1.50E+6 Edit Diversight Capital cost(USD/unit) 5.96E+9 Edit Compressor cooling water (Lit/hr) 1.92E+8 Diversight Capital cost(USD/unit) 5.96E+9 Edit Compressor cooling water (Lit/hr) 1.92E+8 Edit Diversight Capital cost(USD/unit) 8.45E+8 Edit Diversight Capital cost(USD/unit) 1.92E+8	data
Initial fuel load (kg/unit) 75000 Edit Electricity required (MWe/unit) 1438 Edit Compressor cooling water (Lit/hr) 1.50E+6 Edit Dverright Capital cost (USD) 1.92E+8 Annual fuel feed (kg/unit) 25000 Edit Number of units 1 Edit Compressor cooling water (Lit/hr) 1.50E+6 Edit Dverright Capital cost (USD) 1.92E+8 Iverright Capital cost(USD/unit) 5.96E+9 Edit Dverright Capital cost(USD/unit) 8.45E+88 Edit Dverright Capital cost(USD/unit) Hydrogen Economic Evaluation P	00 Edit
Amrual ruel feed (kg/unit) 25000 Edit Number of units 1 Edit Jverright Capital cost(USD/unit) 596E+9 Edit Overright Capital cost(USD/unit) 8.45E-88 Edit Overight Capital cost(USD	+8 Edit
Uvernight Capital cost(USD/unit) 5.45E+9 Edit Overnight Capital cost(USD/unit) 8.45E+8 Edit Overnight Capital cost(USD/unit) 8.45E+8 Edit	
	Progra
Laprar cost fraction for electricity 10 Edit Energy usage cost# (USD) 0.00E+0 Edit Compre-	
per le contra a massiquence (es) Other 05M cost(% of capital 4 Edit Other f	
Table cost (5 of capital cost) 1.7 E dit Decommissioning cost (% of 10 E dit Deco	
Capital cost (2 of capital cost) capital cost capital cos	
28 Edit @ Theorem and a series of a series of the series o	
HEEP Results	ency
Pie Chart Tabular Display C Hydrogen cost details C Thermal energy cost de'	lear Power LAE
Charant Charatt C	and the
Edge to the call the call of t	
Equity [.026USD (42.28%]]	
Update Currency Database	
Decommissioning [.001USD [2.38%]]	
Fuel[.004USD [6%]]	1

Hydrogen Economic Evaluation Programme

> View Main Page Addith	onal inputs Helj	p Exit		China China	and parts of the	aile Noau			
Use "Real" rates	5 (?) Equity : Debt — B	orrowing Tax Rate	- Depreciation		Construction	Operating	View/Edit	Go Back	Fallwalt
viscount rate: 5 % nflation rate: 1 %	(%) (%) int 70 : 30	rerest (%) (%) 10 10	period (yrs)	R) 5	40	Additional Inputs	Update and store Case	hydrogen cost
Activities to be consist Vuclear Power Plant	ered for eval	Hydro	gen generation	$\mathbf{\Sigma}$	I Hyc	drogen storage	$\mathbf{>}$	F Hydro	ogen transportation
Use library Read from lib utility Create new of List of nuclear plant files in the APWR HTTPK600	Help (?) rary Update fata NPP Database # library	Use library utility C List of Hydroger SIPER 200	Read from library Create new data <i>plant files in the l</i>	Help (?) Update H2GP Database	Lise library utility		—Help (?)	Use library utility	Help (?)
rameter	Value Add.				H2 Storage Meth	od		Type of H2 Transp	portation
	600 Edit	<u> </u>	CE	PP	C M	aas (Liqi	Jefaction	@ Pine	C Vehicle
	540 Edit	Parar		Lue Add. input	Param 9	CG	Add.	Param	Disalinas
	4 Edit	H2 ge Heat o	S-I	E+8 Edit 945 Edit	Storage LO		14E+6 Edit	Distanc Distanc	Pipelines
Z III	100000 Edit	Electri C		815 Edit	Compre 55		28E+6 Edit	Capital O	2.95E+8 Ec
and the second second second second second second	4.77E+8 Edit	Capita U	HyS	E+9 Edit	Capital I		D6E+8 Edit	Other C C	Trucks
DMP				ZOE +O E EI	Other 0			Decomi 💾 io	UEC
PMR	0 Edit		ПТСЕ	5.46 Edit	other o	9	UEER	Serie Second	A CONTRACTOR OF
PMR In cost (USU/Kg) M cost (% of capital cost)	9 0 Edit 250 Edit 2.07 Edit	Other Decor Capita	HTSE	5.46 Edit 10 Edit	Decommissioning c capital cost	g ost (% of	0 Edit		PERMIT.

Nuclear Hydrogen Production Toolkit - NPTDS

- Up-to-date information
- Link to IAEA tools
- Highlights of IAEA Publications
- News on IAEA Activities
- Newsletter on nuclear hydrogen production

Nuclear Desalination Toolkit - NPTDS

- Up-to-date information
- Link to IAEA tools
- Highlights of IAEA Publications
- News on IAEA Activities
- Summaries of the TWG-ND
- Newsletter on nuclear desalination

	Toolkit on Nuclear Desalination
	CONTENTS
Click on the links to access the relevant information.	EVALUATING OPTIONS FOR DESALINATION USING NUCLEAR ENERGY IAEA TOOLS ON NUCLEAR DESALINATION (DEEP & DE-TOP) IAEA PUBLICATIONS ON NUCLEAR DESALINATION [New Release]
	IAEA ACTIVITIES ON NUCLEAR DESALINATION Updates
Contact	TECHNICAL WORKING GROUP TWG-ND
Division of Nuclear Power Department of Nuclear Energy	
IAEA Vienna International Centre P.O. Box 100 A-1400 Vienna, Austria	PROGRAMME
Tel : +43 1 2600 22751 Fax: +43 1 2600 29598	NEWSLETTERS
Ibrahim Khamis Email: <u>I.Khamis@iaea.org</u>	LATEST NEWS

Thank you!