

IAEA Interregional Workshop on Advances in Design of **Generation-IV SMRs** "Atoms for Peace and Development" Beijing, 3-7 June 2024

Progress in Technology of Innovative Reactors and SMRs

Vladimir Kriventsev

Fast Reactor Technology Development Team Nuclear Power technology Development Section **Division of Nuclear Power** Department of Nuclear Energy International Atomic Energy Agency https://www.iaea.org/topics/fast-reactors

email: FR@IAEA.ORG

Outline

- Reactor Classification and Innovative Nuclear Energy Systems Systems
- Gen-IV Systems and IAEA Terminology
- Six GIF Gen-IV reactor concepts and other innovative systems
 - Super Critical Water cooled Reactor (SCWR)
 - Very High Temperature Reactor (VHTR)
 - Gas cooled Fast Reactor (GFR)
 - Sodium cooled Fast Reactor (SFR)
 - Lead and LBE cooled Fast Reactor (LFR)
 - Molten Salt cooled Reactor (MSR)
- Fast Reactors: World Status
- Innovative SMRs
- IAEA Advanced Reactors Information System (ARIS)

Evolution of Nuclear Power Reactor Technology

			and the second	
Generation I	Generation II	Generation	ז ווו/ווו+	Generation IV
			MIE. NE NP. TDS. JULY 2023	
Dresden-1, BWR General Electric	Calvert Cliffs, PWR Westinghouse	EPR, EDF PWR A	P1000, Westinghouse PWR	Molten Salt Reactor
Early prototypes	Large-scale power stations	Advanced Evoluti Advanced Passiv	ionary and ve designs	Innovative designs
 Calder Hall GCR Douglas Point PHWR/CANDU Dresden-1 BWR Fermi-1 SFR Kola 1-2 PWR/VVER Peach Bottom 1 HTGR Shippingport PWR 	 Bruce (PHWR/CANDU) Calvert Cliffs (PWR) Flamanville 1-2 PWR Fukushima II 1-4 BWR Grand Gulf BWR Kalinin PWR/VVER Kursk 1-4 LWGR/RBMK Palo Verde PWR 	 ABWR GE-Hitachi BWR AP1000 Westinghouse PWR APR1400 KHNP PWR CAP1000 SPIC PWR EPR EDF PWR HPR1000 (Hualong One) CNNC and CGN, PWR 	VVER1200 ROSATOM ESBWR GE-Hitachi, passive BWR Small Modular Reactors CNNC ACP-100 PWR Rosatom RITM-200 PWR CNEA CAREM PWR Holtec SMR-160 PWR EDF NUWARD KAERI SMART PWR NuScale VOYGR PWR GE Hitachi BWRX-300 BWR Rolls-Royce RR-SMR PWR KHNP i-SMR PWR	 GFR Gas-cooled Fast reactor LFR Lead-cooled fast reactor MSR Molten salt reactor SFR Sodium-cooled fast reactor SCWR Supercritical water cooled reactor VHTR Very high temperature reactor
1950 1970	1990 20	010 2030	2050	

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA AEA

Classification of Nuclear Fission Reactors

- Moderator
 - Water / Heavy Water
 - Graphite
 - None (fast neutron systems)
- Coolant
 - Water/Heavy Water
 - Liquid Metal
 - Sodium/Lead/Lead-Bismuth Eutectic (LBE)
 - Gas
 - Air
 - CO₂
 - He
 - Molten Salt
 - Fluoride
 - Chloride

- Fuel
 - UO2
 - MOX (UO₂ + PuO₂)
 - Metallic
 - U/Pu Nitride
 - U/Pu Carbide
 - Molten Salt
- Purpose
 - Electricity Generation
 - Non-Electric Application
 - District Heating
 - Water Desalination
 - Industrial Purposes
 - H₂ Production
- Power
 - Low/Middle/High

Terminology of Gen-IV Innovative Reactors

Sodium cooled Fast Reactor (SFR) Lead cooled Fast Reactor (LFR)

Very-High-Temperature Reactor (VHTR)

- Early Prototypes and Demonstration Plants Gen I
- Current Fleet Gen II-III
- Advanced Nuclear Reactors
 - Evolutionary designs Gen III and III+
 - Innovative designs Gen IV
 - SMRs can be either evolutionary or innovative
- ARIS: IAEA Advanced Reactors Information System: https://aris.iaea.org/

Supercritical Water cooled Reactor (SCWR) Gas cooled Fast Reactor (GFR)

Molten Salt Reactor (MSR)

GIF: Goals for Gen-IV Nuclear Energy Systems

Sustainability-1	Generation IV nuclear energy systems will provide sustainable energy generation that meets clean air objectives and provides long-term availability of systems and effective fuel utilisation for worldwide energy production.
Sustainability-2	Generation IV nuclear energy systems will minimise and manage their nuclear waste and notably reduce the long-term stewardship burden, thereby improving protection for the public health and the environment.
Economics-1	Generation IV nuclear energy systems will have a clear life-cycle cost advantage over other energy sources.
Economics-2	Generation IV nuclear energy systems will have a level of financial risk comparable to other energy projects.
Safety and Reliability-1	Generation IV nuclear energy systems operations will excel in safety and reliability.
Safety and Reliability-2	Generation IV nuclear energy systems will have a very low likelihood and degree of reactor core damage.
Safety and Reliability-3	Generation IV nuclear energy systems will eliminate the need for offsite emergency response.
Proliferation Resistance and Physical Protection	Generation IV nuclear energy systems will increase the assurance that they are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism.

Water Cooled Reactors

	WCR
coolant	H_2O/D_2O
outlet T, C	288-329
efficiency, %	35
max P, MPa	7-17
spectrum	thermal

- Mature Technology
- Low T => Low Efficiency
- High Pressure => safety issues
- Only thermal spectrum => not sustainable

Super-Critical-Water cooled Reactor

	WCR	SCWR
coolant	H ₂ O	H ₂ O
outlet T, C	288-329	500
efficiency, %	35	45
max P, MPa	17	25
spectrum	thermal	thermal/fast

- Known Technology
- *Hight T* => *High Efficiency*
- Single Loop; High Pressure Turbine
- High Pressure => safety issues
- Sharp Change of Physical Properties
 Near Critical Point
- Sustainable if works in fast spectrum

8

Gas cooled Reactors (HTGR, VHTR, GFR)

Sodium cooled Fast Reactor

EBR-I 1951

- Mature Technology
- Hight coolant T => High Efficiency
- Low Pressure
- Fast spectrum
- Na violently reacts with water and air

Innovative Sodium cooled SMRs

HEXANA: multi-purpose SFR

Heavy Liquid Metal cooled Fast Reactors

- New Technology
- Compatibility of Materials
- No intermediate circuit
- *Hight coolant T => High Efficiency*
- Low Pressure
- Fast spectrum
- Pb/LBE 02 Control

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA

Innovative Lead/LBE cooled SMRs

Molten Salt Reactors

Online Waste/Fuel Management

NATRIUM: SFR with Molten Salt Storage System

Announced by Terrapower

- 345 MW(e) SFR combined with
- 1GW(th) Energy molten salt-based storage system
- Pick power can boost to 500 MW(e)
- Can be used for non-electrical applications
- Can work with renewables

Comparing Innovative Reactor Concepts

Innovative Reactor Concepts: What else to consider?

	WCR	SCWR	HTGR	GFR	SFR	LFR	MSR
coolant	H ₂ O	H ₂ O	Не	Не	Na	Pb/LBE	Fluoride/Chloride
outlet T, C	329	500	750	750	550	500	800
efficiency, %	35	45	50	50	45	43	48
max P, MPa	17	25	7	7	0.2	0.5	0.2
n. spectrum	thermal	thermal/ fast	thermal	fast	fast	fast	thermal/fast
ho, kg/m³	700	800/ <mark>90</mark>	0.12/8.5		830	10000	3200
C_P , kJ/kg/K	5.7	5/4	5.2/ <mark>5.2</mark>		1.3	0.15	1.4
$ ho C_P$, MJ/m³/K	4	0.35	6x10 ⁻⁴ /0.4		1	1.5	4.5
k, W/m/K	0.6	0.1 - 0.4	0.15/0.24		70	18	0.01
boiling T, C	350				880	1700	1700
melting T, C					98	208	500
CMI ¹	ok	ok	good	good	ok	?	?
enrichment, %	<5	<5/<20	<5	<20	<20	<20	<5/<20

1) CMI: Coolant – structural Materials Interaction

Thorium Fuel Cycle: Works in Thermal Spectrum TH-232 >> U-233: Fast Reactor is not Optimal

See IAEA e-Learning Module on Thorium-Cycle-Based Reactors

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024

Vladimir Kriventsev, IAEA

Fast Reactors in Operation & under Commissioning

Country	Name	Coolant	Fuel	Purpose	Power (th/e) MW	Year (Op.)	Status
	BOR-60	sodium	UO ₂ /MOX	experimental	60/10	1969	operating
Russia	BN-600	sodium	UO ₂	prototype	1470/600	1980	operating
	BN-800	sodium	UO ₂ /MOX	commercial	2100/880	2015	operating
China	CEFR	sodium	UO ₂	experimental	65/20	2011	operating
	CFR600-1	sodium	UO ₂ /MOX	prototype	1500/600	~2024	commissioning
India	FBTR	sodium	(Pu,U)C	experimental	40/13	1985	operating
India PF	PFBR	sodium	MOX	prototype	1250/500	~2024	commissioning
Japan	JOYO	sodium	UO ₂ /MOX	experimental	150/	1978	lic renew (2024?)

BN-800 Russia, 2015

CEFR, 20 MW(e) China, 2011

FBTR, 13 MW(e) India, 1985

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA

20

Fast Reactors under Construction and Decommissioning

Country	Name	Coolant	Fuel	Purpose	Power (th/e) MW	Year (Op.)	Status
Russia	MBIR	sodium	MOX	experimental	150/50	~2028	construction
	BREST-OD- 300	lead	PuN/UN	demonstrator	700/300	~2026	construction
China	CFR600-2	sodium	UO ₂ /MOX	prototype	1500/600	~2028	construction
Eranco	Phenix	sodium	MOX	prototype	590/250	1973	decommissioning
France	Superphenix	sodium	MOX	FOAK	3000/1242	1986	decommissioning
Japan	MONJU	sodium	MOX	prototype	714/280	1994	decommissioning
USA	FFTF	sodium	UO ₂	experimental	400/	1980	decommissioning

CFR600, China

MBIR, Russia IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA

MONJU, Japan

FFTF, USA

Fast Reactors under Development and Design

	?)
J.	کل

Country	Name	Туре	coolant	fuel	Purpose	Power (th/e), MW	Status	
	BN-1200	SFR	sodium	PuN/UN/MOX	Gen-IV, industrial	2900/1220	design	
Russia	SVBR-100	LFR	LBE	UO ₂	prototype	280/100	design	
	MOSART	MSR	molten salt		prototype	2400/	concept	
	CFR1000	SFR	sodium		Gen-IV, industrial	2512/1000	design	
China	CLFR-300	LFR	LBE/lead		demonstrator	740/300	concept	
China	CLEAR-I	LFR	LBE	UO ₂	experimental	10/-	design	
	CLEAR-M10d	LFR	lead	UO ₂	demonstrator	25/10	concept	
FU	ALLEGRO	GFR	helium	MOX	Gen-IV, demonstrator	75/-	design	
LO	MSFR	MSR	molten salt (LiF-AFn)		Gen-IV, prototype	3000/	concept	
Belgium	MYRRHA	LFR ADS	LBE	MOX	experimental	100/-	design	
	ASTRID	SFR	sodium	MOX	demonstrator	1500/600	suspended	
Franco	HEXANA	SFR	sodium	MOX	SMR prototype	2x400/Flexible	concept	
France	OTRERA	SFR	sodium		Gen-IV SMR prototype	295/110	concept	
	STELLARIA	MSR	chloride salt		SMR prototype	250/100	concept	
India	FBR 1&2	LFR	lead	MOX	prototype	1250/500	design	
Italy	LFR-AS-30/200	LFR	lead	MOX	experimental/prototype	/30 or /200	concept	
Romania/Italy	ALFRED	LFR	lead	MOX	Gen-IV, demonstrator	300/120	design	
	KALIMER-600	SFR	sodium		GEN-IV, prototype	1523/600	design	
R. of Korea	PGSFR	SFR	sodium	U-Zr/U-TRU-Zr	GEN-IV, demonstrator	400/150	suspended	
	SALUS-100	SFR	sodium		GEN-IV, prototype	267/100	design	
Sweden	SEALER-55	LFR	lead	CN/UN?	demonstrator	140/55	design	
UK/USA	Westinghouse LFR	LFR	lead	MOX	demonstrator	950/450	design	
	NATRIUM	SFR	sodium		demonstrator	1000/345-500	design	
USA	VTR	SFR	sodium	U-Pu-Zr?	experimental	300/-	design	
	SSTAR	LFR	lead		experimental	45/20	supended	
	MCFR	MSR	chloride salt		experimental	1800/800	design	
	EM2	GFR	helium	UC	demonstrator	500/265	concept	
	KP-FHR	MSR	fluoride salt		demonstrator	310/140	concept	
	PRISM	SFR	sodium	U-Pu-Zr	demonstrator	840/311	concept	
	LLC ARC-100	SFR	sodium		demonstrator	260/110	concept	,

Vladimir Kriventsev, IAEA

Small and Medium-sized or Modular Reactors (SMRs)

23

Advanced Reactors that produce typically up to 300 MWe, built in factories and transported as Modules to sites for Installation as demand arises.

SMR Key Design Features

Simplification by Modularization and System Integration

Multi-module Plant Layout Configuration

Underground construction for enhanced security and seismic

IAEA WS on Gen-IV SMRs, E WX Technology, Inc.

Enhanced Safety Performance through Passive System

- Enhanced severe accident features
- Passive containment cooling system
- Pressure suppression containment

Image courtesy of BWX Technology, Inc.

SMR Technology Developers

25

Dynamics in SMR Designs (ARIS SMR Booklet 2022)

IAEA Nuclear Energy Series No. NP-T-1.10 **Nuclear Reactor** Technology Assessment for Near Term () IAEA

Nuclear Reactor Technology Assessment for Near Term Deployment, 2013

AEA Nuclear Energy Series No. NB-151.10 (Rev. 1) Auclear Reactor Technology Assessment for Near Term Deployment

Nuclear Reactor Technology Assessment for Near Term Deployment, 2022

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA

SMR Developers and Designs – ARIS SMR Booklet 2022

(A) IAEA

Number of SMR designs under development per country

Number of SMR designs under development: 83

aris.iaea.org/Publications/SMR_booklet_2022.pdf

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA

Vladimir Kriventsev, IAEA

SMR Designs Based on Core Outlet Temperature

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA

Stages of Development and Deployment of SMRs

IXEAINEKIPVENTERD,SASEMIR/05Oct23

Stage of Design or Deployment

SMRs for Non-Electric Applications

IAEA WS on Gen-IV SMRs, Beijing, 3-7 June 2024 Vladimir Kriventsev, IAEA

IAEA Advanced Reactors Information System (ARIS)

IAEA International Conference on SMRs: 21-25 October 2024

The First International Conference on Small Modular Reactors and their Applications in Vienna on 21-25 October 2024.

- The Conference is being prepared as a joint event organized with inter-Agency cooperation between:
 - Department of Nuclear Energy
 - Division of Nuclear Power
 - Department of Nuclear Safety and Security
 - Division of Nuclear Installation Safety
- Supported by
 - Department of Safeguards, and
 - Department of Technical Cooperation
- About 450 contributions have been accepted

Atoms for peace and Development...

dandende if uterstenienien Ø

Thank You!

email: FR@IAEA.ORG